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Abstract

Modularization is the process of decomposing a system into multiple components

that then can be developed in isolation. It thereby enables separate compilation and

facilitates modular reasoning and understanding of programs.

Two aspects of modularization can be identified. The first, and most prevalent

aspect is to decompose a system statically according to its responsibilities. In this

thesis we take another view on modularization: The decomposition of a system in

terms of temporal aspects.

Using objects to represent modules, the temporal aspect of modularization is cap-

tured by dynamic specialization. Over the course of the program execution, objects

can be augmented with additional operations step-by-step. The incremental acquisi-

tion of information and refinement of components very naturally matches how humans

acquire knowledge and refine their mental model.

Dynamic runtime adaptation and refinement of objects is not available in most

statically typed, class-based programming languages. An analysis of existing solutions

to this problem reveals a few approaches that seem suitable for our purposes: The

language gbeta, the language extension of generic wrappers and the calculus of in-

complete objects. However, all three solutions lack a seamless integration into existing

software development environments.

Encodings allow expressing language features within a (different) host language,

while reusing existing infrastructure and facilitating reuse. In particular, no custom

compiler or preprocessor is necessary.

We propose an encoding of “typesafe extensible functional objects” to solve the

problem of temporal modularization and to support the programming paradigm of

dynamic specialization. A prototype of the encoding is embedded into Scala, a stati-

cally typed, multi paradigm language that supports both functional as well a object-

oriented programming.

The solution presented in this thesis is based on a standard coalgebraic encoding

of objects, where interfaces are encoded as endofunctors and classes are encoded as

coalgebras over these endofunctors. Objects are then represented by the terminal

coalgebra, which can be obtained by unfolding a coalgebra with an initial state.

Building on the standard encoding, we define composition of coalgebras modeling

static composition of traits and add extension points to the infinite tree of observations

(the terminal coalgebra). The added extension points enable later refinement of the

object implementation in terms of composing the original coalgebraic implementation

with the provided extension. Our encoding is typesafe. It reuses Scala’s type system

to express dependencies between different extensions to assure that all dependencies

are fulfilled at runtime and method calls can be resolved. Extensions in our encoding

are transparent. An extended object can be used everywhere the original object could

have been used. In consequence, objects can be extended with multiple extensions,

aggregating all features described by the individual extensions. Our encoding supports

late binding. The self-reference is always bound to the receiver of a method call,

enabling extensions to override methods and refine the behavior of an object.

Extensions for referencing the base object and selective open recursion have been

developed on top of the core encoding. As a proof of concept, our encoding has been

evaluated by the analysis of three use case examples.
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Zusammenfassung

Modularisierung bezeichnet den Prozess, bei dem ein System in mehrere Kompo-

nenten aufgeteilt wird, sodass diese getrennt voneinander entwickelt werden können.

Dadurch ist es möglich, Komponenten separat zu kompilieren, unabhängig voneinan-

der zu testen und sie zu verstehen, ohne dabei notwendigerweise die anderen Kompo-

nenten kennen zu müssen.

Es können zwei Aspekte von Modularität betrachtet werden. Der erste Aspekt

betrifft das statische Aufteilen von Systemen in Module anhand ihrer Zuständigkeit.

Diese Arbeit fokussiert allerdings den zweiten und seltener berücksichtigten Aspekt

von Modularität zu Grunde: Die Aufteilung eines Systems in Komponenten anhand

zeitlicher Kriterien.

Werden Module durch Objekte repräsent, so kann der zeitliche Aspekt der Modu-

larisierung durch sogenannte Dynamic Specialization ausgedrückt werden. Dynamic

Specialization erlaubt es, während der Laufzeit eines Programmes Objekte schrit-

tweise mit neuen Operationen auszustatten. Das inkrementelle Sammeln von Infor-

mation ähnelt hierbei dem Prozess menschlicher Wahrnehmung und Bildung mentaler

Modelle.

Dynamische Anpassung und Erweiterung von Objekten ist in den meisten klassen-

basierten und statisch getypten Programmiersprachen nicht verfügbar. Eine Analyse

von Arbeiten zu diesem Problem zeigt, dass einige der beschriebenen Lösungsansätze

gut geeignet scheinen. Hierzu zählen die Sprache gbeta, die Spracherweiterung Generic

Wrappers, sowie der Calculus of Incomplete Objects (Kalkül unvollständiger Objekte).

Alle drei Lösungen können leider nicht direkt in bestehende Softwareentwicklungs-

prozesse eingebunden werden, da sie spezielle Compiler benötigen und damit nicht

kompatibel zu existierenden Bibliotheken und Entwicklungsumgebungen sind.

Encodings erlauben es, ein Sprachkonstrukt in einer (anderen) Host-Sprache aus-

zudrücken, welche dieses Element möglicherweise nicht unterstützt. Das Encoding

verwendet ausschließlich die Host-Sprache, um die Semantik des Sprachkonstruktes

auszudrücken. Dadurch ist es möglich, weiterhin existierende Softwareentwicklungs-

prozesse und Bibliotheken zu verwenden.

Im Rahmen dieser Thesis wird ein Encoding von typsicheren, erweiterbaren, funk-

tionalen Objekten vorgestellt, um das Problem der Modularisierung anhand zeitlicher

Aspekte zu lösen und Dynamic Specialization zu unterstützen. Eine prototypische Im-

plementierung wurde in der Programmiersprache Scala vorgenommen. Scala ist eine

statisch getypte, Multi-Paradigmen Sprache, die sowohl funktionale als auch Objekt-

orientiere Programmierung erlaubt.

Die hier vorgestellte Lösung basiert auf einem aus der Literatur bekannten koalge-

braischen Encoding von Objekten. Hierbei werden Schnittstellen als Endofunktoren

und Klassen als Koalgebren über diese Funktoren dargestellt. Objekte entsprechen

dann der terminalen Koalgebra, dem unendlichen Baum möglicher Beobachtungen

auf einem Objekt.

Auf dieser Interpretation von Objekten aufbauend, wird in dieser Arbeit die

statische Komposition von Klassen durch Komposition von Koalgebren modelliert.

Desweiteren wird der unendliche Baum von Beobachtungen auf jeder Ebene mit Er-

weiterungspunkten versehen, die es ermöglichen, die Implementierung eines Objekts in

Form der ursprünglichen Koalgebra durch eine spezialisierte Koalgebra auszutauschen
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und hiermit das Objekt um neue Funktionalität zu erweitern.

Das Encoding ist typsicher, denn Abhängigkeiten zwischen verschiedenen Er-

weiterungen werden im Scala Typsystem ausgedrückt. Dadurch wird sicher gestellt,

dass diese zur Laufzeit erfüllt sind und Methodenaufrufe korrekt aufgelöst werden

können. Erweiterungen im Encoding sind “transparent” für den Nutzer, denn er-

weiterte Objekte können überall dort verwendet werden, wo das ursprüngliche Ob-

jekt erwartet wurde. Insbesondere können Objekte mehrfach erweitert werden und

aggregieren hierbei sämtliche Operationen, die durch die verschiedenen Erweiterun-

gen beigetragen werden. Das Encoding unterstützt späte Bindung, denn Referenzen

zum Objekt selbst werden immer an die letzte Erweiterung des Objekts gebunden.

Dadurch können Erweiterungen Methoden überschreiben und das Verhalten eines

Objektes spezialisieren.

Auf Basis des Encodings, wurden zwei Spracherweiterungen entwickelt. Die erste

ermöglicht es das ursprüngliche Basisobjekt innerhalb einer Erweiterung zu referen-

zieren. Die zweite erlaubt es auszuwählen, ob ein Methodenaufruf spät gebunden

werden soll, oder nicht. Das Encoding wurde anhand von drei Beispielprogrammen

evaluiert.
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Chapter 1

Introduction

It is difficult to implement algorithms on complex data structures. This is especially

the case when those data structures are part of an evolving software system with

possibly multiple parties involved, each of them independently working on their share

of the large scale system. Modularization deals with this problem, often by intro-

ducing abstraction barriers like interfaces or contracts (Meyer, 1992) and thereby

performing information hiding (Parnas, 1972). Stable interfaces protect user code

from internal implementation changes by explicitly articulating guarantees. At the

same time it protects the implementor of the interfaces from undesired assumptions

about the inner workings made by the client. It thus encourages an evolution of the

implementation without having to concern with breaking user code.

Software components are modules which are developed by third-parties and pos-

sibly only distributed as closed source in binary form. Component-oriented software

development (Nierstrasz et al., 1992) aims at creating reusable components that are

then adapted and combined to yield complete software systems. One important part

of working with software components is hence to add extensions in order to customize

the components to the use-site context.

This gives rise to another notion of modularity – one that is concerned with the

dynamic evolution of a system. With the term temporal modularity we try to capture

the conceptual nature of modularity that we are concerned with in this thesis. Hence,

temporal modularity describes decomposing the behavior of a system into components

that can be applied at runtime depending on the state of the program. Figure 1.1

illustrates the difference between the two notions of modularity. While with the usual

notion of modularity decomposition takes place in its entirety before compile time

(Figure 1.1a), temporal modularity partitions the software artifact according to run-

time criteria (Figure 1.1b). We neither claim that one aspect is more important than

the other, nor that one can subsume the other. However, we believe that supporting

emphboth aspects can facilitate implementing modularized algorithms on complex

data structures.

1.1 Extensibility and the Expression Problem

Decomposing algorithms statically while preserving extensibility is already difficult.

One important problem in this context is the expression problem (Wadler, 1998). This

section briefly introduces the expression problem, as well as one particular solution

that had a big influence on our approach: object algebras (Oliveira and Cook, 2012).

When modularly defining algorithms on data structures, we might think of two

different dimensions to decompose the modules accordingly. Both dimensions offer

different kinds of extensibility. The first dimension chooses the structure of the data

as the dominant decomposition criterion. This allows adding new variants of data

types later. The second dimension focuses on the algorithms which are defined. This

allows adding new operations later, that is, defining new functions over the data type

in functional programming or adding methods to the corresponding classes in object

1



(a) Structuring software into components that

separately can be compiled, but are composed

at link-time.

(b) Structuring software into compo-

nents that selectively can be defined and

composed at runtime.

Figure 1.1: Two different notions of modularity.

oriented programming. Supporting both kinds of extensibility is well-known to be a

difficult problem (Wadler, 1998).

– Class-based object-oriented programming languages offer good support for one

dimension of extensibility: Adding new variants to a class hierarchy by sub-

classing a common interface. At the same time it is difficult to add methods to

all variants of class hierarchy without modifying existing code.

– Functional programming languages offer good support for the other dimension of

extensibility: Adding new functions defined on a data type by pattern matching

on the variants. At the same time it is difficult to add new variants to a data

type which also requires adding new cases to the function definitions.

Oliveira and Cook (2012) introduced object algebras as a program-structuring

technique that allows modularizing algorithms on data structures while keeping the

definition of data structures open to support extensibility. The notion of an object

algebra serves as a first-class representation of an algorithmic component and thus

facilitates both extensibility and modularity. The core idea is based on the isomor-

phism

(S + T )→ A ≈ (S → A)× (T → A)

that is, a function defined on a sum-of-products (where S and T are variants) is

isomorphic to a product containing one function handling each variant. Using this

isomorphism Oliveira and Cook bring the functional style of defining programs to

object oriented languages. The cases of pattern matching (S+T ) translate to methods

of the object algebra (S → A and T → A). A program on a data type can be defined

by implementing the interface of the object algebra corresponding to that data type.

Since object algebras are classes, the advantages of object oriented programming can

be used to also add new variants hence solving the expression problem.

1.2 Dynamic Extensibility

Object algebras allow to modularly define algorithms by decomposing finite data

structures. Here “modularly” refers to the way object algebras are defined as separate

components according to the features they implement (Oliveira et al., 2013). Once

an object algebra is constructed, it can be applied to a given data structure in order

to perform the necessary computation.

However, traversing trees of data is not the only program structuring technique

that is used for real software system and complex algorithms. Where the definition

2



of functions over data structures is a technique that originates in functional pro-

gramming, objects are an alternative way of structuring programs widely used in

object-oriented programming.

Objects encapsulate a hidden state together with the description of behavior. The

behavior can be observed by invoking methods on the object, possibly leading to a

change of the internal state. Objects typically outlive a single method call. This is

different with functions defined on data structures. They typically describe stateless

computation for a given static data structure.

We have seen how object algebras can be used to define algorithms modularly.

What does it mean to modularly define objects? (Ernst, 1999) defines dynamic spe-

cialization as augmenting objects step-by-step with additional operations over the

course of a program execution. The incremental acquisition of information and re-

finement of components very naturally matches how humans acquire knowledge and

refine their mental model. With every part of new information, the behavior of an

object can be adapted by adding new methods or redefining existing ones.

In this thesis we take the standpoint that dynamic specialization, aiding temporal

modularization, is the dual to (statically) modularizing algorithms by decomposing

them into traversal-components.

While the previous motivation was rather theoretical, a few examples show why

dynamic object specialization is actually useful in practice. Dynamic specialization

can be used for:

– customization of objects according to language localization only known at run-

time,

– adding methods for printing and tracing in order to facilitate debugging,

– creation of mock objects in test-driven-development,

– incremental construction of objects performed by modularized builders,

– “monkey-patching” behavior of library objects to address application specific

requirements and

– annotating objects with additional information, acquired after object creation.

In summary, dynamic specialization of objects allows modularization according to

temporal decomposition criteria, dynamic adaption to the computational context as

well as “just-in-time” incremental specification of objects.

Since dynamic specialization seems to be very useful, the following question arises:

Can dynamic specialization of objects be embedded into a statically typed

programming language?

1.3 Our Approach

As it turns out, there is a close correspondence between the behavior of objects

and the definition of algorithms on data structures. Where folding an algebra over

abstract data types represents computation performed on data structures, unfolding

a coalgebra with an initial state corresponds to object creation (Jacobs, 1995; Lämmel

and Rypacek, 2008). We thus might need to rephrase the above question slightly to:

“Can unfold , that is, object instantiation, be incrementalized to create a modular

definition of codata”?

In order to answer this question, we developed obj .extend, an encoding of typesafe

extensible functional objects based on coalgebras. For this purpose, the approach of
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translating pattern matching for function definition into object algebras is dualized.

In our approach we translate mixins that define objects into coalgebras, which are

functions.

For the implementation of obj .extend we use Scala (Odersky and Zenger, 2005),

a statically typed programming language with both support for functional program-

ming and object oriented programming idioms. Scala has no support for dynamic

specialization and thus does not allow to extend the interface of already constructed

objects. This limitation is quite common in the field of statically typed, class-based

programming languages. Other prominent examples include Java, C++, Objective C

and Eiffel. However, with traits, Scala has advanced support for static modulariza-

tion of classes. Traits can be thought of as interfaces that are also allowed to contain

implementation. To construct objects, multiple traits can be statically composed and

afterwards instantiated. However, to the current day it is neither possible

a) to mix-in traits not known at compile time of the defining module nor

b) to mix-in traits into already initialized objects.

This thesis sets out to bring dynamic object specialization as a library to the Scala

language in order to allow the dynamic modularization of algorithms on complex data

structures. For this purpose an encoding of functional objects is developed that is

applicable in multi paradigm languages like Scala. It can be used as a library and

does not require any change to the existing compiler. While many advanced Scala

features are used to syntactically ease the use of the encoding, the only crucial features

that are not frequently found in other languages are intersection types, higher-kinded

types and variance annotations. In summary, the contributions of this thesis are:

– An encoding of functional objects that also supports dynamic specialization

(Section 3.4). For this purpose we first adapt the standard encoding (Sec-

tion 3.1) to also emulate features that are already present in Scala such as:

1. self-type annotations and private state (Section 3.3),

2. subtyping in presence of an isorecursive fixed point construction (Sec-

tion 3.4.3),

3. references to the base similar to super calls (Section 4.1).

– An extension based on the core-encoding that allows to express use-site selective

open recursion (Section 4.2).

– Translation of several small use case examples to our encoding (Section 5.1),

– Phrasing object extensibility and dynamic specialization coalgebraically as a

combination of a modified unfold and composition on coalgebras (Section 3.4).

– A delegation based composition of type constructors1. (Section 3.2).

– Automatic generation of functor instances in Scala (Section 3.2).

The source code, containing the prototype implementation of our encoding, as

well as the use case examples is available under http://obj.extend.b-studios.de.

The implementation is a proof of concept and thus not yet ready for production use.

We hope that our encoding meaningfully complements object algebras and that

the two techniques can be used together to unlock extensibility not possible before.

1An early version of the composition operator mix for types of kind ∗ has already been used in

our earlier work on (Rendel et al., 2014) and thus cannot fully be counted as contribution to this

thesis
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Chapter 2

Motivation and Context

This chapter provides motivation for dynamic specialization by example. The example

then is used to motivate a set of desired requirements that should be met by solution

candidates. A summary of related work evaluates individual solutions with respect

to the requirements, focusing on the context of dynamic specialization.

2.1 Dynamic Specialization: a Real World Example

Imagine we are trying to write an object relational database mapper (ORM) for a cus-

tomer. We have just read the book “Patterns of Enterprise Application Architecture”

by Fowler (2002), and the Active Record design pattern caught our attention: “An

object that wraps a row in a database table [...], encapsulates the database access,

and adds domain logic on that data” (Fowler, 2002, p. 160).

Soon after, we start working on an API that represents the rows of the database

as objects. Very quickly, we notice that our implementation performs really badly.

As a consequence, we reify our database queries and also represent them as objects.

On the one hand this allows to perform optimization of the queries before executing

them, on the other hand the execution of queries can be delayed until the results are

actually used.

Everything is packed up in a nice domain specific language where queries look like

BusinessObject.all .filter { ...}.sortByName

Proudly, we present the new library to our customer who immediately comes up with

a new requirement: She would like to be able to define own custom query-methods like

query .medianValue (attr) – and additionally they should be stateful to allow advanced

caching strategies. Inclined to serve our customer we agree to consider the request,

but soon we realize that the requirements are not trivial.

The essence of the problem is, that we want to enable the client to freely add

functionality to library objects and at the same time do not want to expose details

on how the objects are constructed to perform information hiding (Parnas, 1972).

The responsibility of constructing objects is on the side of the framework. We could

add some configuration mechanisms, maybe by using the builder pattern. However,

we cannot anticipate all possible extensions our client and other future clients will

request. So how can we dynamically augment objects in retrospect?

Dynamically typed languages like Ruby or JavaScript feature a liberal model of

extensibility where objects always can be augmented, building the basis for program-

ming techniques such as monkey patching – changing program behavior at runtime.

Developers from the Ruby-on-Rails team encountered similar requirements as those

issued by our fictional customer. They were able to address them quite easily, us-

ing Ruby’s support for dynamic inheritance, to offer the method extending in their

API1. Calling query .extending (Custom) on a query object will dynamically mix-in

1http://apidock.com/rails/ActiveRecord/QueryMethods/extending
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the module Custom into the query object, augmenting its interface by the methods

define in Custom.

With the flexibility comes additional complexity of the resulting programs. It is

not visible to the user of a library how objects are created and how they might be

modified by other users during their lifetime. This increases the difficulty to reason

about program behavior, resulting in the bad reputation of some features of dynamic

languages. This is especially a problem since the above mentioned languages lack

a static type system. However, enabling specialization of objects at runtime in a

language with static typing can arguably give more guarantees. For instance it could

prevent erroneous access of non existing methods, also known as NoMethodError in

Ruby.

Despite the runtime behavior that is sometimes hard to comprehend and especially

hard to foresee, many researchers have been attracted by the flexibility and expres-

siveness of dynamic languages. The remainder of this Chapter will revisit existing

solution candidates. The selection of related work was guided by the following list of

requirements which draws much inspiration from (Büchi and Weck, 2000).

1. Extensibility at Runtime. In our example above, the objects representing

database queries are instantiated by the framework, not the client. The client only

obtains instances by the use of framework methods and hence cannot immediately

influence the construction of objects. While some configuration options might be

anticipated, custom extensions created after the framework certainly cannot. Thus

we demand extensibility of objects, after they have been created.

2. Transparency. The actual type of an extended object should be both (a) a

subtype of the actual type of the object (the base) and (b) a subtype of the extension

that has been applied. For example, an extension that has been designed to be

applied to instances of a class Query , should also be applicable if the actual type of a

query object is a subtype of Query , like GroupingQuery<:Query . In particular, after

extension, we still want to be able to call methods available on grouping queries such as

getGroupingProperty . At the same time also the newly added methods implemented

by the extension should be available. The extension thus should not hide the actual

type of the base but behave transparently2.

3. Late binding. Extensions should be able to override methods while preserving

late binding. Calls to methods should always be resolved with respect to the dynamic

receiver at runtime.

Let us assume we want to add a caching mechanism for the execution of queries

in retrospect. Every time the result of a query is requested using the method get , we

first want to look up the result in our cache, before possibly executing the query to

update our cache in the case of a cache miss. The caching should also be applied for

requests that are performed from within other method implementations.

4. Permanency. Extensions added to an object should be persistent. That is,

after an object has been extended, all subsequent usages of the object should refer to

the extended interface. This is important in particular, since extensions itself might

carry state such as the above mentioned cache.

2 What we call “transparency” is originally split into two separate requirements (Büchi and Weck,

2000). The authors use the term “genericity” to describe the fact that extensions can also be applied

to subtypes of the specified base-type and “transparency” to require that the result of applying an

extension is an element of the actual type of the base and of extension type. We drop “genericity”,

since it is implied by “transparency”.
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5. Integration. The integration into existing software systems should be seamless.

This requirement is twofold: On the one hand, the transition costs to a possible

solution should be kept low. It should be possible to reuse existing infrastructure

such as development environments and build pipelines. On the other hand, it should

be possible to extend objects instantiated from existing legacy classes without having

to modify the source or the binary code of these classes.

2.2 Current State of the Art

The desire to dynamically adapt the runtime behavior of objects in statically typed,

class-based programming languages has a long standing history. Multiple decades of

research spawned a variety of solutions. From design patterns over language extension

proposals to specialized calculi. In this section we will discuss some of the solutions

in the light of dynamic specialization, highlighting the different benefits and disad-

vantages. While there is a large body of research on dynamically typed programming

languages, we will focus on statically typed approaches, only.

2.2.1 Dynamic Specialization and gbeta

The term “dynamic specialization” was coined by Erik Ernst in his PhD thesis on

gbeta (Ernst, 1999, Ch. 7.3). He describes dynamic specialization as a very natu-

ral refinement process, driven by incremental knowledge acquisition which he calls

discovery. A programming language should thus be able to reflect the procedural

refinement of objects.

As an example, we can inspect how a network package is processed by the several

layers of an TCP/IP stack. Arriving on the link layer a package might be represented

as a Frame class that has fields for the header and footer as well as the contained

frame data. The package object then is passed on to the next layer “internet” which

analyses the frame data to extract the IP header information like the IP address

and the corresponding IP data. Since the internet protocol is the basis for routing,

after this step, the package object might be refined to be also of the class Routeable.

Likewise, the transport layer might analyze the object to further specialize it to be

Transportable. Finally, the application layer might pass the package object to the

module that handles the corresponding high level protocol (for instance HTTP or

FTP), possibly again specializing the package object.

This example shows how a very simple package object evolves from an instance

of Frame to an instance of the specialized type Frame & Routeable & Transportable &

HttpPackage. While the first processing layers of the stack are fairly static and thus

could be foreseen in the design of a software system, the processing in the application

layer does dynamically depend on the package content.

As a generalization of the BETA language (Madsen et al.), gbeta (Ernst, 1999)

introduces a few features that are unusual for a statically typed language. Classes

can be created and merged dynamically at runtime. Further, it is possible to inherit

from dynamically created classes by inheriting from class variables. All of this is

possible, since classes are first-class citizens in gbeta. Lastly, and most important for

this thesis, in gbeta an object can be dynamically specialized with a class to also be

an instance of that given class.

Let us translate the above TCP/IP example to gbeta. Some example classes for

Frame, Routeable, Transportable and HttpPackage can be defined as in Figure 2.1.

The unusual syntax %(...) {...} defines a pattern. In gbeta classes and methods are

unified under the concept of patterns. Patterns can specify input and output within
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Frame: %{frameBody : string };
Routeable: %{

routeTo: %(str : string) {"routing to " + str | stdio};
};
Transportable: %{protocol : %(| "TCP")};
HttpPackage: %{

httpHeaders: %(| "GET / HTTP/1.1\nHost: example.org\n\n");

};

Figure 2.1: Example of a dummy TCP/IP stack implementation in gbeta.

the pair of parenthesis, separated with a pipe-character. Members and computation

can be defined within the curly braces. If no output is present, the pipe can be

omitted. If neither input or output is necessary, the parenthesis can also be omitted

as a whole.

The class Frame has one uninitialized member frameBody of type string . Routeable

contains the method routeTo which takes a string and prints the result to stdio. The

classes Transportable and HttpPackage each define one constant method that always

returns the same string.

Given package, a reference to an object of type Frame we can print the contents

of the frameBody property to the standard output.

package.frameBody + "\n" | stdio;

The pipe character here represents message passing. Hence, the result of evaluat-

ing package.frameBody + "\n" is passed as input arguments to stdio. After having

analyzed the frame body, we might want to specialize package to also be of type

Routeable. In gbeta this is straightforward:

Routeable# | package#;

This refines the pattern of the object package with the pattern Routeable to result in

the merge Frame & Routeable. We can match on the runtime pattern of an object to

use the newly gained functionality:

case it : package do {
? Routeable: "127.0.0.1" | it .routeTo;

};

This results in “routing to 127.0.0.1” being printed on the console.

The same refinement can of course also be applied with the classes Transportable

or HttpPackage. Since the object itself is refined, the object identity is preserved and

all references to package can make use of the extended functionality. The extension

is permanent.

Since our definition of dynamic specialization origins from (Ernst, 1999) it is not

surprising that gbeta matches almost all of our requirements specified above. Patterns

are first class and can be merged into objects at runtime. Late binding is supported

by means of virtual attributes (Ernst, 1999, Ch. 4.2). gbeta only fails the requirement

of integration into existing systems. As a full general purpose programming language,

gbeta requires its own compiler and development infrastructure.
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2.2.2 Static Extensibility

Next, we will revisit some solutions that statically allow the decomposition of classes

into separate modules. In each of the solutions, the modules can be type checked

separately, supporting modular reasoning. Since the approaches are static, non of

them supports extensibility at runtime. Nevertheless, considering these technologies

is interesting since it shows the difference between static and dynamic modularization.

Static Mixin Composition. Scala offers static mixin composition (Odersky and

Zenger, 2005; Bracha and Cook, 1990) of multiple separately defined traits to yield

what is represented by intersection types on the type level. Traits are allowed to con-

tain abstract as well as concrete members which automatically complement each other

when being mixed together. In contrast to abstract members, self-type annotations

allow a more course grained nominal specification of interfaces that need to be mixed

in, before an object can be instantiated from the trait. The clause trait A extends B ,

explicitly requires that B will follow after A in the chain of base classes. Thus a call to

super within A will eventually lead to the invokation of the corresponding method in

B . Specifying the same using a self-type annotation trait A {self : B ⇒} only assures

that B will be mixed in before the object can be initialized. It does not articulate

assumption about how A and B relate in the chain of base classes. Using self-type

annotations it is thus possible to express circular dependencies, since any order of the

mutual dependent traits will meet the requirements.

In order to avoid problems usually associated with multiple inheritance the Scala

compiler performs linearization by topologically sorting all the collected super classes

according to the order in which they are specified. After linearization, every call to

super is deterministic and hence does not lead to ambiguities.

With mixins we can decompose the monolithic definition of a class C into multiple

traits, say A and B . Objects can be immediately be instantiated from both component

traits by

val obj = new A with B { }

This creates the intersection type of A and B , performs linearization of the super

classes and checks whether all requirements on the self-type are met. However, all

involved traits always have to be known at compile time. In our example A and B both

have to be statically known and for instance cannot be bound by type parameters.

Another limitation is that traits cannot be mixed into existing objects. Hence, as

mentioned above, our first and most important requirement of runtime extensibility

is not met.

Open Classes. Another line of static extensibility is represented by open classes

(Millstein and Chambers, 1999; Clifton et al., 2000) and extension methods as found

in the C] programming language. Both techniques allow the retroactive addition

of methods to existing classes, without having to change the original source. That

is, classes that are defined in third party modules can be extended with additional

methods at compile time. An example from (Clifton et al., 2000) illustrates the

definition of a method rotate on the class Shape which is already defined in another

compilation unit.

public Shape Shape.rotate (float a) {...}

Compared to Scala traits, which are closed after definition, open classes and ex-

tension methods represent an improvement regarding the extensibility. However, with
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both techniques it is not possible to dynamically extend individual objects with new

functionality. In addition, extension methods as implemented in C] do not support

late binding and thus also fail to meet this requirement.

2.2.3 Design Patterns

Using composition to overcome the limitations of (static) inheritance is a well known

refactoring technique (Johnson and Foote, 1988; Fowler, 1997; Kegel and Steimann,

2008) and the core idea of many design patterns (Gamma et al., 1994). In this

subsection we highlight two design patterns that are specifically targeting dynamic

specialization.

Decorator Pattern. The decorator pattern is a design pattern (Gamma et al.,

1994) that allows dynamic extension of objects with decorators. For this purpose,

the decorating class is a subclass of the base class (the class of the object being dec-

orated), adding new methods to the interface, possibly overriding existing methods

and forwarding all other methods to the base object as default implementation. Dec-

orators are often set up in a class hierarchy where all implementations and decorators

inherit from an abstract interface, allowing to arbitrarily nest several decorators on

top of implementing classes.

While supporting extensibility at runtime, the decorator pattern suffers from mul-

tiple problems. First of all, independently developed extensions cannot be composed,

since methods added to the interface of one decorator cannot be anticipated by an-

other decorator. In consequence, only the interface of the last decorator is visible to

the client. Assuming two decorators QueryLogger and QueryCache, applying both

decorators and invoking methods, that are only defined on the inner decorator will

fail:

new QueryCache (new QueryLogger (query)).logMessages // Type Error!

This example illustrates, that the decorator pattern does not account for trans-

parency as required earlier in this chapter.

In addition, as Ostermann and Mezini (2001) point out, the decorator pattern does

not account for transparent redirection, that is, the late binding of this. Methods

overridden in outer decorators thus will never be called by the decorated objects. We

say that the decorator performs forwarding to its base, not delegation.

There are at least two well known solutions to the latter problem (Kniesel, 1999).

One solution to achieve late binding is by storing and updating the self-reference in

the decorated objects and using the explicitly maintained self-reference instead of

this. Another possible solution is to modifying the interface of the base class and the

decorators, in order to add an explicit self parameter to every method.

To the best of our knowledge, there exists no solution in form of an adaptation

of the design pattern, that also addresses the former problem of transparency. As we

will see in later chapters, the encoding presented in this thesis represents a powerful

alternative to the decorator pattern that also takes transparency into consideration.

Pimp-my-Library Pattern. The Pimp-my-library pattern (Odersky, 2006) is a

design pattern specific to Scala that allows to pretend that methods have been added

to a class in retrospect. For this purpose, when a method is not available on an

object, implicit conversions are used to automatically instantiate a wrapper class

that implements the missing interface. Implicit conversions are function calls (or

constructor calls as in this case), which are automatically injected by the compiler
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at positions that otherwise would have resulted in a static type error. The wrapper

class that adds the missing method is very similar to an “implicit decorator”. This

insight reveals the pimp-my-library pattern as a variant of the decorator pattern, also

sharing the same set of disadvantages. Additionally, since the decorator is implicitly

generated just for a specific method call, the lifespan of this decorator is usually bound

to this single method call – this forbids any stateful computation.

2.2.4 Aggregation Based Language Extensions

Inspired by prototype-based languages Kniesel (1999), Büchi and Weck (2000) and

Bettini and Bono (2008) propose extending classical class-based programming lan-

guages with a mechanism to automatically delegate calls to the parent / wrapped

object. Another language extension proposal by Bettini et al. (2003) adds the deco-

rator pattern as language feature, similar to (Büchi and Weck, 2000), which is then

being compiled to standard Java. However, the decorators by Bettini et al. do not

meet the transparency requirement and are thus not discussed in further detail.

Darwin / Lava. Faced with third party components or existing legacy software

that may not be modified, the goal of runtime component adaptation is to enable

interaction between those legacy components and components implementing new fea-

tures. Set in the context of component based software development, Günter Kniesel

and his colleagues developed the language Darwin (Kniesel, 1999, 2000) and its Java-

like dialect Lava (Costanza et al., 1999) to introduce a type-safe way for component

adaptation. The languages draw from both class-based programming languages as

well as prototype-based languages. Class-based features include the usual definition

and instantiation of classes, inheritance and subtyping. Inspired by prototype-based

languages, Darwin also adds primitive language support for delegation, as known from

dynamic languages like Self (Ungar and Smith, 1987). With delegation, at runtime a

method lookup that fails in the child object will automatically continue in the child’s

parent objects.

To specify references to parent objects which should be used for dynamic method

lookup, darwin introduces the notion of delegation attributes.

public class QueryCache extends Caching {
mandatory delegatee Query parentQuery ;

public QueryCache (Query q) {parentQuery = q ; }
public Result get () {...parentQuery .get ()...} // also performs caching

}

The example shows a Darwin class QueryCache that defines the delegation attribute

parentQuery and additionally implements the method get as its only method. It

is assumed that get is also defined in the class Query . If the cache lookup fails,

get is explicitly invoked on the parent to actually perform the query. Since Darwin

implements delegation, subsequent calls to get within parentQuery will be dispatched

to the late bound receiver.

cachingQuery = new QueryCache (myQuery);

On cachingQuery not only get can be invoked, but also all methods inherited from

the superclass Caching and all methods that are defined in the declared type of its

delegatee Query are available. QueryCache is said to be a declared child class of

Query . This shows that there are two ways of creating subtypes in Darwin, by

inheritance and by delegation (Kniesel, 1999).
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The QueryCache example is chosen to highlight the similarities of component

adaptation and dynamic specialization. The specialization of a Query “object” with

caching facilities corresponds to the adaptation of a Query “component”.

Darwin supports extension of objects at runtime. The object myQuery can be

equipped with support for caching in retrospect. The extension is permanent, fu-

ture method calls on cachingQuery do not invalidate the extension. Extensions of

objects are reflected in the type, facilitating static checks for method calls. Only

the requirements of transparency and integration are not met by Darwin. The type

of cachingQuery is independent of the actual type of myQuery . Even if myQuery is

statically known to be a subtype of Query , such as GroupingQuery<:Query , applying

the extension behaves opaque in Darwin hiding the actual type. Thus the following

code will not type check:

new QueryCache (

new GroupingQuery ("name")).getGroupingProperty // Type Error!

Since Darwin and Lava are languages on their own right, both languages require a

custom compiler. This hinders a seamless integration into existing software projects

and a reuse of existing development environments.

Generic Wrappers. Büchi and Weck (2000) introduce generic wrappers: a lan-

guage extension proposal for Java that allows transparent aggregation of objects at

runtime. Wrappers are similar to decorators as introduced above3. Since wrappers

and decorators are essentially the same, they also share the same set of problems. In

particular, applying wrappers is not transparent, per se. Let us recall the example of

multiple applied decorators that does not type check:

new QueryCache (new QueryLogger (query)).logMessages // Type Error!

The type error is raised since the method logMessages is only defined for objects

of type QueryLogger , but not for QueryCache. The language extension of generic

wrappers allows the same example to type-check by adding wrappers as primitives to

the language. The two wrappers would be defined as

class QueryCache wraps Query { ...}
class QueryLogger wraps Query { ...}

and the above example then translates to

new QueryCache< new QueryLogger< query >()>().logMessages

using the special syntax to pass the wrappee, the base object to extend. The translated

example now does type-check, and rightfully so! Even if the wrappers have been

declared to wrap an object of the static type Query , they are generic in the dynamic

type of the wrappee. Hence, Query only represents the upper bound of the type of

the expected wrappee.

To summarize, the static type of the wrapper is a subtype of the static type of

the wrappee. While this is similar to decorators, the difference is, that the runtime

type of a wrapped object will also be a subtype of the runtime type of the wrappee.

The wrapper is thus fully transparent in its runtime type. Overall, generic wrappers

appear to be a good solution to dynamic specialization. Just like decorators they

3For the purpose of this thesis, we will treat wrappers and decorators as pseudonyms. To be

precise, wrappers describe the general process of object aggregation while decorators describe the

modification of behavior.
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can be applied at runtime and the wrapping is permanent. Büchi and Weck (2000)

claim that the choice of forwarding vs. delegation is orthogonal to their extension

proposal. This characterizes their work as focused on transparency, while delegation

is of greater importance in (Kniesel, 1999). However, since generic wrappers are a pro-

posed extension to Java integrating generic wrappers into an existing code base would

at least require to recompile the entire code base. In case of a binary distribution this

is impossible.

Incomplete Objects. (Bettini et al., 2004) introduce a calculus of incomplete ob-

jects trying to leverage benefits of both class-based as well as object-based program-

ming paradigms. In the calculus, a mixin is a function on classes, that can add new

methods to the class as well as specify methods which are not yet complete on their

own. These methods can either be abstract and require implementation, or they can

be redefining and thus require an original definition that can be referred to via the

keyword next. A mixin can be applied to a class to yield a subclass, augmented with

the functionality defined in the mixin. The novelty of the calculus is, that mixins also

can be instantiated to yield incomplete objects.

The calculus has been implemented as an extension of Featherweight Java (FJ),

called Incomplete Featherweight Java (Bettini and Bono, 2008). There are a few

differences between the calculus and the FJ implementation that the authors claim

to be necessary to fit the calculus into the setting of FJ:

– The notion of mixins in the calculus translates to incomplete classes in IFJ.

Similar to mixins, incomplete classes are allowed to contain abstract as well as

redefining methods. Likewise, incomplete classes can be instantiated to yield

incomplete objects.

– The type system of the calculus is based on collecting constraints about objects

which are checked when the object is composed with another object or methods

are called. The constraints are collected on the granularity of methods and thus

the calculus exhibits a form of structural subtyping. Incomplete Featherweight

Java in contrast builds on nominal subtyping.

– There is also an important semantic difference between the two languages. In

the calculus it is possible to invoke complete methods on incomplete objects.

Invoking methods that still require completion will lead to an error issued by

the type system. In contrast, IFJ forbids method invocation or field access on

incomplete objects altogether strictly limiting the usage of incomplete objects

before being completed.

We will use Incomplete Featherweight Java (IFJ) for the examples in this section.

For instance we can phrase the QueryCache example in terms of incomplete objects.

class QueryCache abstracts Query {
void clearCache () {...}
redef Result get () { ...next.get ()...} // also performs caching

}

The incomplete class QueryCache redefines the method get , which is already defined

in Query . It also adds the new method clearCache.

QueryCache c = new QueryCache ();

Query q = createQuery ();

c ← q ;
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Runtime Transp. Late Binding Perm. Integr.

gbeta∗ 3 3 3 3 7

Static Mixin Comp. 7 3 3 3 3

Open Classes 7 3 3 3 3a

Extension Methods 7 3 7 3 3

Decorator 3 7 7 3 3

Pimp-My-Library 3 3b 7 7 3

Darwin 3 7 3 3 7

Generic Wrappers∗ 3 3 3c 3 7

Incomplete Objects∗ 3 3 3 3 7

(a) Compiles to Java-byte code, but requires custom compiler.

(b) The extension is only transparent, since it is automatically removed after one call.

(c) The authors claim, that both forwarding and delegation are possible semantics but choose forward-

ing for their formalization.

* Suitable for dynamic specialization.

Table 2.1: Summary of the related work.

The incomplete class QueryCache can be instantiated to an incomplete object c.

Afterwards, c can be completed by composing it with an instance of a query object

q using the composition operator ←. After completion, all methods on an object

can be used. At the same time an completed object cannot be composed with other

complete objects.

What sounds like a severe limitation, actually does not impose to many restric-

tions. An complete object can always be “wrapped” into other incomplete objects

to be augmented with extensions. Indeed, IFJ is very similar to generic wrappers.

Both approaches create new objects that delegate to dedicated parent objects in case

a method is not implemented in the extension. Incomplete classes correspond to

generic wrappers. Both can be instantiated and applied to a base object (the parent),

as becomes visible in the following example:

new Buffered< new Stream ()>(); // Generic Wrappers

new Buffered ()← new Stream (); // Incomplete Objects

In addition to classical subtyping via inheritance, both approaches also add sub-

typing by delegation to the extended base object. In IFJ the base can be referenced

within implementations via the keyword next. Generic wrappers offer the semanti-

cally equivalent keyword wrappee.

However, incomplete objects are first-class citizens within IFJ. They can be passed

as function arguments and they can be stored in records, before being applied to

augment complete objects. In contrast, the parameter of generic wrappers has to be

known at instantiation time of the wrapper.

After all, the calculus of incomplete objects is a transparent solution to dynamic

specialization. It supports late binding, extensions are permanent and a static typing

discipline ensures that composition of objects and method lookup will not fail.

2.2.5 Summary

The variety of the above listed solutions demonstrates that dynamic specialization

(Ernst, 1999) has found much attention in research over the past decades. Being faced
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with the limitation of static inheritance, aggregation and delegation offer configuration

and adaptation at runtime (Johnson and Foote, 1988). Wrappers and the decorator

pattern (Gamma et al., 1994) are early approaches to regain some of the flexibility

that has been available for quite some time in dynamic, prototype based languages

(Ungar and Smith, 1987). Prototype based languages and the decorator pattern have

influenced the design of a few proposed languages extensions ever since (Kniesel,

1999; Büchi and Weck, 2000; Bettini et al., 2003). The notion of incomplete objects

(Bettini et al., 2004; Bettini and Bono, 2008) offers similar expressiveness as dynamic

specialization. The related work is summarized in Table 2.1.

While three solutions are considered suitable to perform dynamic specialization

(marked with ∗), each of them either requires a new compiler or a custom preprocessor.

The other solutions do not sufficiently satisfy our requirements.

An encoding enables the usage of a new language feature inside of a host language,

without adaption of that host language. This also encourages the reuse of existing

libraries and development environments. We also believe that encoding a language

feature can aid a deeper understanding of that feature. To fill the gap and enable

dynamic specialization in existing languages, this thesis proposes an encoding of ex-

tensible functional objects building on a standard encoding of objects as coalgebras.
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Chapter 3

Solution

Our solution, in form of a coalgebraic encoding of objects in Scala, is presented in this

chapter. Before the solution can be elaborated, Section 3.1 gives some introduction

into the terminology of object encodings.

Encoding objects in Scala is like starting from scratch. Users of the encoding

cannot use Scala’s existing mechanisms to modularly define objects together with

our encoding. Thus, Section 3.2 and Section 3.3 build on the encoding of objects as

terminal coalgebras and restore some of Scala’s expressivity – Section 3.2 introduces

composition of coalgebras to allow a primitive form of statically modularized object

definitions. Section 3.3 then allows to express dependencies between different coal-

gebraic implementations which corresponds to the feature of self-type annotations

in Scala. Section 3.4 adds support for dynamic specialization, defined in terms of a

modification of unfold and composition of coalgebras.

3.1 Background: Encoding Objects

Scala’s inheritance and the corresponding typing discipline cannot immediately be

influenced by user code. Aside from compiler plugins, which are not discussed in this

thesis, it is neither possible to change the semantics of the built-in language constructs

nor to change the typing rules which are used to typecheck user programs.

However, encodings allow emulation of language features by describing a precise

programming pattern to which the user must adhere. At the same time encodings

support a better understanding of features by expressing their semantics in an already

studied host-language.

One famous example is the Church encoding. By interpreting data as program

that is parametrized over the constructors of the data type, it is possible to encode

data types within the λ-calculus. For instance the number 3 is represented by the

Church numeral:

three = λz .λs.s (s (s z ))

For instance, invoking the Church encoded value three with "" and λs.s + "I" yields

the unary representation "III". Using the Church encoding, the feature “data-types”

can be used in any host-language that only supports first-class functions. (For more

information about Church encodings we refer to (Pierce, 2002)).

This example of en encoding showed, that we can implement new language features

or re-implement and modify existing ones by encoding them as user programs of the

host language. This style of language extension has the advantage that it can be

distributed as a single (possible empty) library coupled with a programming pattern.

At the same time the semantics of existing programs written in the host language is

not affected.

Object oriented programming has been encoded in functional programming lan-

guages (Cardelli, 1984), and functional programming has been encoded in object

oriented languages (Abadi and Cardelli, 1996, p.66). Oftentimes, the programming
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trait Counter {
def get : Int

def inc: Unit

}
(a) The interface of a counter object.

trait CounterF [S ] {
def get : Int

def inc:S

}
(b) The interface endofunctor representing the

Counter interface.

(c) An infinite tree of observations on a

counter object.

Figure 3.1: The interface of an object, its endofunctor and the corresponding infinite

tree of observations.

paradigm that is not natively supported, is emulated as an encoding. The encoding

presented in this thesis is different in this regard. Scala already offers good sup-

port for both programming paradigms, that is, functional programming and object

oriented programming. However, since we cannot change the built-in semantics of

objects in Scala to also support the one missing feature of dynamic specialization, we

make use of the flexibility of encodings and design the object system from scratch.

In consequence, existing modularity features in Scala like self-type annotations or

mixin composition cannot immediately be reused in our encoding. Instead, we have

to reimplement these features in our encoding.

In the remainder of this section we will review a standard encoding of purely

functional objects as coalgebras as well as the necessary preliminaries. This encoding

will serve not only as theoretical background but also as starting point for further

developments in later sections.

3.1.1 Objects as functions

Objects can be described as a collection of operations, bundled with private state,

which is individual to each object. The only way to interface with the objects is via

the collection of operations and only their implementation is allowed to access the

object’s private state.

The first purely functional encoding of objects was introduced by Cardelli (1984).

As noted above, a central concept of object oriented programming is that of private

state. Details of the implementation might be hidden to protect the user from fu-

ture changes as well as facilitating correctness proofs. According to private state

we can distinguish at least two different kinds of functional object encodings, which

are sketched in the remainder of this section. As an introductory example we use a

counter object that provides two methods: get to retrieve the current count and inc

to increment the count by one. The Scala trait defining the interface of such a counter

is depicted in Figure 3.1a.

The first encoding interprets objects as records of functions that close over the

private (mutable) state (Cardelli, 1984). This encoding is for instance predominant
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in JavaScript to simulate private state and perform information hiding. A simple

counter in this style might be implemented as

type Counter = (Unit⇒ Int, Unit⇒ Unit)

def makeCounter (n: Int) = {
var count = n

(()⇒ count , ()⇒ count += 1)

}

Building a fresh counter with initial state set to zero and increasing it two times

amounts to

val c = makeCounter (0); c . 2 (); c . 2 ()

The second kind of encoding does not use mutable references to express the

changed state of an object. Instead, a modified copy of the state is returned (Pierce,

2002). In this scenario the state needs to be threaded through all the method in-

vocations. To allow information hiding, the type of the state is represented by an

existential.

type Counter = (S , (S ⇒ Int, S ⇒ S )) forSome {type S }

The existential type is necessary to pass on the modified state without knowing

its actual type. However, we will not go into the details of this encoding, but instead

we will see a variant of this encoding based on coalgebras.

3.1.2 Objects as coalgebras

Before we can get to the actual encoding, some preliminaries on coalgebras have to

be discussed. Regardless of their theoretic foundation in category theory, coalgebras

are a strikingly simple concept. Informally, just like an object, a coalgebra can be

thought of as a black-box. By the principle of information hiding, we do not know

about the internal workings of the black box, but only can observe its behavior from

the outside. It hence describes a state-based system, where the state-space is hidden

from the external observer (Jacobs and Rutten, 1997).

Returning to the counter example above, we notice that we only can analyze the

current state of the counter object by invoking the get method or trigger a change

of state (a state transition in terms of state machines) by invoking the inc method.

Performing these actions repeatedly leads to the infinite tree of observations depicted

in Figure 3.1c. The object in state c1 is retrieved by calling inc once after unfolding.

The subtree rooted at observation c1.inc represents the infinite tree of observations

that will always have the same shape.

Thus, an object itself might as well be defined by its observable behavior, or as

we will see by its terminal coalgebra (Reichel, 1995).

For our purposes, we define a coalgebra as a function S ⇒ F [S ], as defined in

Figure 3.2a. Here F is a type constructor with kind ∗ → ∗ and S is the type of

the state. A coalgebra can thus be seen as a one step function from a state to the

structure of next possible states.

Taking the interpretation of a type as the set of its inhabitants, in the categorical

setting F represents an endofunctor (a functor whose domain and co-domain are the

same) on the category Set while S is called the carrier set of the coalgebra. To

capture the notion of functors more precisely we introduce the type class1 Functor

1Type classes are a language feature heavily used in the programming language Haskell. We use

an encoding of type classes in Scala introduced by Oliveira et al. (2010). For this purpose, a type

class T [ ] is represented by a trait T , while an instance of T [A ], for a specific A, is interpreted as

evidence that A is a member of the type class T .
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in Figure 3.2b. For a given structure described by F , members of the type class

Functor allow lifting an operation A ⇒ B to an operation between the structures

F [A] ⇒ F [B ]. Informally, a functor instance allows us to modify elements inside a

structure, without having to know the structure itself.

For convenience we also define the function map, that uses implicit resolution to

find evidence for the corresponding functor:

def map [F [ ]: Functor , A, B ] (fa: F [A ]) (f : A⇒ B): F [B ] =

implicitly[Functor [F ]].map (fa) (f )

The syntax F [ ]: Functor is called a context bound and is rewritten by the Scala

compiler to an additional argument prepended to the implicit argument list, which

itself is appended to the argument lists if not already existent. The result of the

rewriting in this case would be:

def map [F [ ], A, B ] (fa: F [A ]) (f : A⇒ B) (implicit ev : Functor [F ]): F [B ]

The context bound syntax will be used throughout this thesis, since it provides us

with a concise notation for expressing required type classes.

Following (Jacobs, 1995; Lämmel and Rypacek, 2008) we can express the interface

of Counter from Figure 3.1a by the interface endofunctor CounterF :

trait CounterF [S ] {
def get :(Int, S )

def inc:(Unit, S )

}

In both methods get and inc the return type is tupled with the type parameter S

indicating the modified state. Without loss of generality and for ease of presentation

we further simplify the interface functor by distinguishing between methods which

are observations and those that are transformations. In general, also methods that

are observations can trigger a change of the internal state, but we assume that this

is not the case. However, the full expressiveness can easily be restored by splitting

every method into a transformational and a observational counterpart and agreeing

on the calling convention to always call the two in sequence. The simplified interface

is shown in Figure 3.1b.

An implementation of the Counter interface now can be given as an instance of

the coalgebra with the functor set to CounterF and the type of the state set to Int.

val Counter : CoAlg [CounterF , Int] = s ⇒ new CounterF [Int] {
def get : Int = s

def inc: Int = s + 1

}

The result-type of get and inc only match by coincidence since the type parameter S

is instantiated with Int. It becomes visible, that the coalgebra Counter describes just

a single computational step. More precisely, it describes how to create observational

structure CounterF from a given state S . To instantiate a new counter and increment

it by two we provide the initial state 0 and repeatedly apply the coalgebra Counter :

Counter (Counter (Counter (0).inc).inc).get

Even in this simple example we can see two things that might be undesirable. Firstly,

the unfolding of the observational tree is left to the user of our counter object by

repeatedly applying the Counter coalgebra. Secondly, the type of the internal state
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type CoAlg [F [ ], S ] = S ⇒ F [S ]

(a) A coalgebra is a function from a given state to a structure

of state.

trait Functor [F [ ]] {
def map [A, B ]:(A⇒ B)⇒ (F [A ]⇒ F [B ])

}
(b) The function map allows lifting an operation A⇒ B to

an operation between functors F [A ]⇒ F [B ].

trait Fix [F [ ]] {
def out : F [Fix [F ]]

}
(c) The greatest fixed point

Fix represents the terminal F-

coalgebra. The infinite un-

folding is hidden under the

lambda abstraction of out .

def unfold [F [ ]: Functor , S ] (co: CoAlg [F , S ]): S ⇒ Fix [F ] = state ⇒ new Fix [F ] {
lazy val out = map (co (state)) (unfold (co))

}
(d) Unfolding a coalgebra with an initial state results in the greatest fixed point. This corresponds

to object initialization.

Figure 3.2: Encoding objects as coalgebras.

Int is exposed as part of the type of the coalgebra CoAlg [CounterF , Int]. Neither

does this comply with information hiding, nor does it match our description of objects

from above.

To overcome these issues we introduce the notion of terminal coalgebras. For

our purposes, we define the terminal coalgebra to be the greatest fixed point of the

function S ⇒ F [S ]. It thus represents the unfolded, infinite tree of observations for

the recursively expanded functor F . Informally, the terminal coalgebra for a functor

F can thus be derived by infinite substitution of occurrences of the carrier within the

structure by the next layer of unfolding. The definition of the fixed point Fix [F ] for

the functor F in Scala is given in Figure 3.2c. It is important that out is a method

(and not an eagerly computed value) in order to assure that the infinite expansion is

only performed lazily one layer after another.

In the coalgebraic encoding, objects are thus represented by the greatest fixed

point of the endofunctor interface F . For the Counter example above we can define

the convenience type alias

type Counter = Fix [CounterF ]

Figure 3.2d defines unfold as a Scala function2. Given any coalgebraic implemen-

tation CoAlg [F , S ] we can instantiate objects by unfolding the coalgebra to its infinite

tree of observations. As mentioned above, the unfolding is performed lazily for every

single layer, triggered by a call to out . The recursion scheme used for unfolding is also

known as anamorphism (Meijer et al., 1991). After unfolding, the initial state S is

not visible anymore and thus the fixed point serves a similar purpose as the existential

type in the sketched functional encoding above.

Finally, we can define a function that given the initial state allows us to build

objects of type Counter .

def makeCounter (n: Int) = unfold [CounterF , Int] (Counter , n)

A counter object that is constructed this way can be incremented two times as follows:

makeCounter (0).out .inc.out .inc.out .get

2For ease of presentation we will use both the curried variant unfold (co) (s) and the uncurried

variant unfold (co, s).
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def compose [F [ ]: Functor , G [ ]: Functor , S1, S2 ] (

coF : CoAlg [F , S1 ], coG : CoAlg [G , S2 ]) = mix (

map (coF (s . 1)) (( , s . 2)),

map (coG (s . 2)) ((s . 1, ))

)

Figure 3.3: Basic form of coalgebra composition. Leveraging the fact that F and

G are functors we can tuple the state after applying the coalgebras point-wise. The

result is a coalgebra implementing both interfaces.

In the remainder of this thesis, often the call to out will be omitted for conciseness

of presentation. In fact, using implicit conversion in Scala this is also often the case

for the actual encoding.

To summarize, objects can be encoded coalgebraically by translating their interface

to an endofunctor F . Implementations of these interfaces then correspond to F-

coalgebras. Given an initial state S by infinite unfolding of any coalgebra CoAlg [F , S ]

we can compute the terminal coalgebra as the greatest fixed point Fix [F ]. The next

layer of unfolding can be unrolled by a call to out . This allows making observations

using the methods specified by the interface functor F .

3.2 Composition of Coalgebras

In Section 3.1 we have seen how objects can be encoded using coalgebras to describe

their behavior. This and the following sections will stepwise elaborate on the encoding

to finally arrive at modular and extensible description of objects, embedded into Scala.

In Scala it is possible to define traits A and B in isolation and then statically

compose them to get the intersection type A with B . At the current stage of our

encoding this is not supported anymore. We can define two coalgebras describing the

implementation for A and B , respectively. However, at this stage of development we

cannot compose these two coalgebras to an implementation for A with B . The cur-

rent section augments the standard coalgebraic encoding of objects to restore Scala’s

expressiveness with regard to static mixin composition.

While it is possible to combine the two interface functors AF and BF via

type BothF [X ] = AF [X ] with BF [X ]

we cannot just compose two coalgebras describing the implementation of the two

interfaces.

Recalling that a coalgebra is defined as a function from the current state to the

implementation of the next possible observations helps understanding why this is

difficult. Two coalgebras, coA and coB , defined over two different functors (AF and

BF ) and two different types of state (S1 and S2) are thus given by the functions

val coA: S1 ⇒ AF [S1 ] = ...

val coB : S2 ⇒ BF [S2 ] = ...

But how can we combine two the coalgebras coA and coB then? At first, we will

consider the case where coA and coB are semantically unrelated and thus do not

depend on each other. We will later see how the encoding can be augmented to allow

expressing dependencies between coalgebraic specifications. Our goal is to derive a

coalgebra coBoth that, given both states S1 and S2, implements observations for the

intersection BothF :
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val coBoth:(S1, S2)⇒ BothF [(S1, S2)] = ...

Following the types, we can see both states are provided as a tuple, so we can apply

the coalgebras point-wise to their corresponding state resulting in values AF [S1 ] and

BF [S2 ]. However, the question remains how the result of the point-wise applications

can be combined to yield the intersection type BothF . To answer this question, we

will assume the existence of the Scala function mix with the signature

def mix [A, B ] (a: A, b: B): A with B

that allows composing two arbitrary Scala values to their intersection type.

Using mix the implementation of coBoth now seems straightforward:

val coBoth = (s:(S1, S2))⇒ mix (coA (s . 1), coB (s . 2))

However, the type of coBoth above is (S1, S2)⇒ AF [S1 ] with BF [S2 ]. This is not the

result we were trying to achieve. The resulting structure of each component is only

defined over the corresponding state, not the tuple representing the common state.

Requiring AF and BF to be functors, we can tuple the result with the original residual

state. This is safe, since the state is private to each individual coalgebra. Since we

required the two coalgebras to be semantically unrelated, state changing operations

in one coalgebra do not affect the state within the other. Using the knowledge that

AF and BF are functors we can modify the above definition to

implicit val funcA: Functor [AF ] = ...

implicit val funcB : Functor [BF ] = ...

val coBoth = (s:(S1, S2))⇒ mix (

map (coA (s . 1)) (( , s . 2)),

map (coB (s . 2)) ((s . 1, ))

)

The functor instances funcA and funcB are marked as implicit parameters to allow

omitting them for the calls to map.

Generalizing this example, the point-wise composition of two coalgebras now can

be expressed as in Figure 3.3.

Finally, using compose, the Scala code of statically composing two traits A and B

and instantiating the result

new A with B {/∗ ... s1 ... s2 ... ∗/}

can be translated to our encoding as follows:

unfold (compose (A, B), (s1 , s2 ))

While in the Scala code A and B are traits and thus second class language features,

in our encoding A and B are coalgebras and hence first-class values that can be passed

as arguments to compose.

Now that we have seen how coalgebras can be composed, the remainder of this

section will discuss some technical details of the implementation.

3.2.1 Automatic Functor Materialization

We have seen that functors play an important role in our encoding. However, manually

writing functor instances for every single interface in the user program can be tiresome

and imposes additional weight on the usage of the encoding. The implementation of
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trait With[A, B ] {
type Apply = A with B

def apply (a: A, b: B): Apply

}
(a) Instances of the type class

A With B witness that values of type

A and B can be composed.

trait WithF [F [ ], G [ ]] {
type Apply [A] = F [A ] with G [A ]

def apply [A ] (fa: F [A ], ga: G [A]): Apply [A ]

}
(b) Instances of the type class F WithF G witness

that for every A values of type F [A ] and G [A ] can be

composed.

def mix [A, B ] (a: A, b: B) (implicit ev : A With B): A with B = ev (a, b)

(c) The function mix is implemented by implicit search for in instance of With

Figure 3.4: The type classes With and WithF that can be used to witness object

composition.

a functor instance on the one hand is probably semantically unrelated to the user

program and on the other hand is quite mechanic to execute. Especially the latter

is the reason why the code for this thesis comes with a macro implementation that

allows automatic derivation of functors. Using implicit macros (Burmako, 2013), that

is, macro calls that are automatically inserted by the compiler, functor instances

can be implicitly materialized and passed as arguments to compose. This allows the

following lightweight syntax of calling the compose method

compose (coA, coB)

which is expanded by the compiler to:

compose [AF , BF , S1, S1 ] (coA, coB) (functor [AF ], functor [BF ])

Here the method call to functor in turn invokes the macro implementation, using

reflection on the types of AF and BF to generate instances of Functor [AF ] and

Functor [BF ], respectively.

3.2.2 Composition of Scala Values

In the beginning of this section we have used the method mix to compose two values a

and b (of type A and B , respectively) to the intersection A with B . In this subsection

we will see how the function mix actually can be implemented.

In their work on feature oriented programming with object algebras Oliveira et al.

(2013) introduced a reflective composition operator delegate3 that like mix in this

thesis allows to compose two objects to their intersection. Their implementation is

based on a dynamic proxy, selecting the object to forward a method call to at runtime.

The instantiation of the dynamic proxy object however comes with the restriction

that a nominal subtype of the intersection type has to be provided as additional type

argument S<:A with B . This is necessary in order to use the function createInstance

from the Java reflection API, that does not offer native support for intersection types

(Oliveira et al., 2013).

Faced with the same problem of composing two objects by forwarding, in earlier

work (Rendel et al., 2014) we introduced the type class With as defined in Figure 3.4a.

An instance of With [A, B ]4 is used as evidence that values of type A and B can

3The function is called delegate, but actually implements forwarding.
4With is highlighted different than the other types since we will mostly use it infix A With B

(which is legal syntax in Scala), reminiscent of the Scala intersection type A with B it computes.
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trait A {
def foo: Int

}
(a) Example trait A.

trait B {
def bar (n: Int):String

}
(b) Example trait B .

implicit object ab extends (A With B) {
def apply (a:A, b:B) = new (A with B) {

def foo = a.foo

def bar (n: Int) = b.bar (n)

}
}

(c) Composing instances of A and B by forwarding.

Figure 3.5: Creating the evidence A With B by hand.

be composed. The witness is provided by the method apply that, given the two

objects a and b, actually computes the composed result. In order to avoid having to

manually implement A With B for every A and B that need to be composed, implicit

macros are used to automatically generate type class instances, similar to the functor

materialization described in Section 3.2.1.

Macros and the type class machinery help avoiding the problem of having to use the

Java reflection API and thus render specifying a nominal subtype unnecessary. The

implementation in (Rendel et al., 2014) however comes with the technical limitation

that the traits A and B must only contain value declarations or method declarations

without any arguments. This was fine for their work on object algebras since the

interfaces that had to be combined were always very simple. For combining interface

endofunctors of arbitrary objects however, this imposes a serious limitation. The

implementation of mixin composition complementing this thesis builds on the method

mix presented in (Rendel et al., 2014) but removes the above mentioned limitation.

Let us now see how the method mix is implemented in this thesis. Figure 3.4c

reveals that in addition to the two objects that should be mixed together, mix also

takes an implicit evidence that values of A and B can be composed. The advantage

of this design is that there are multiple ways of providing such evidence.

Manual evidence The first way to provide evidence is creating a value of type

A With B by hand. This of course should only be considered in individual cases

where a specialized composition is required. Inspecting an example of manual evidence

however also serves as a good introduction on how the composition operation works.

Figures 3.5a and 3.5b define two simple example traits A and B , both consisting only

of one member each. The instance of A With B that serves as evidence that A and

B can composed, is given in Figure 3.5c. On a call to apply a new instance of the

intersection type A with B is created by forwarding the method implementations to

the provided instances a and b, respectively. In case that a method m is define in

both A as well as B the one provided last in left-to-right order (in this case B) “wins”.

The composition operation thus is right-biased which will be important later, when

considering method overriding.

Macro evidence Building on the macro introduced in (Rendel et al., 2014) a more

convenient way of providing evidence A With B is by generating the instance at

compile-time. A necessary condition to be able to do so, is that both types A and

B are fully known at the compile time of the call to mix [A, B ]. If this is the case,

the macro can analyze both types A and B via compile time reflection and thus

automatically generate the instance that is given by hand in Figure 3.5c. This is for

example not the case if one of the two is a type parameter and thus only known when

instantiated. The version of the macro prepared for this thesis now also supports
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methods with arguments (even multiple argument-lists) such as the method bar in

Figure 3.5b.

Reflective evidence As an alternative to the macro based evidence, the instance of

A With B can also be generated at runtime using Scala’s mirror based reflection API.

With the macro based evidence generation, both types A and B have to be statically

known at compile-time when calling mix [A, B ]. With reflective evidence in contrast

the type information can be provided dynamically by providing type-tags for A and

B with the call to mix . Type-tags are a compiler generated physical manifestation of

types, available at runtime and thus outlive the compiler phase of erasure. Type-tags

can be implicitly acquired from the compiler just as type classes by using the context

bound syntax:

def canCompose [A: TypeTag , B : TypeTag ] (a: A, b: B , ...) = {
...

mix (a, b)

...

}

However, the main advantage of reflection over macros in our setting is the individual

handling of TypeTag [A ] and TypeTag [B ]. This becomes visible when currying the

function canCompose:

def canCompose [A: TypeTag ] (a: A) = new {
def apply [B : TypeTag ] (b: B , ...) = {
...

mix (a, b)

...

}
}

This allows successive acquisition and storing of the type-tags, necessary for a call to

mix . This is not possible with the macro based implementation. The flexibility to

select between the three ways of providing evidence has proven useful over the course

of implementing the coalgebraic encoding.

The last important improvements of the composition implementation presented

here is the generalization of With to type-constructors of kind ∗ → ∗.
For this purpose, the constructor class WithF is defined as in Figure 3.4b. An

instance of F WithF G is thus a rank-2 polymorphic evidence, proving that for all

types A an object of F [A ] and an object of G [A ] can be composed to F [A ] with G [A ].

The implementation of automatically materializing instances of WithF is technically

more involved then spawning instance of With but conceptually the same. Instances

of WithF are important to generically compose two different interface endofunctors

without knowing their state type, yet. The type member Apply [A ] will be used in

the following to avoid the need for type-aliases such as BothF above. Using type

member access, BothF can be expressed inline as: (AF WithF BF )#Apply. In the

remainder, the term intersection (type) of functors will refer to this type application

of (WithF)#Apply
5.

To summarize, compared to Rendel et al. (2014) the implementation developed

for this thesis a) adds support for methods with arbitrary arguments, b) adds an

5For ease of presentation, we will sometimes use the more lightweight AF with BF to mean

the intersection of two functors (AF WithF BF )#Apply. Technically the lightweight version is

incorrect since with expects its arguments to be types and not type constructors. The usage of this

abbreviation will thus be reduced to in-text usage, only.
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type OpenCoAlg [Self [X ]<: Prov [X ], Prov [ ], S ]

= CoAlg [Self , S ] ⇒ CoAlg [Prov , S ] ]

(a) The type of open coalgebras, allowing to express

dependencies over the type of the self-reference.

def compose [

Self 1[X ]<: Prov1[X ], Prov1[ ], S1,

Self 2[X ]<: Prov2[X ], Prov2[ ], S2 ] (

co1:OpenCoAlg [Self 1, Prov1, S1 ],

co2:OpenCoAlg [Self 2, Prov2, S2 ]):

OpenCoAlg [

(Self 1 WithF Self 2)#Apply,

(Prov1 WithF Prov2)#Apply,

(S1, S2)

]

(b) An intermediate version of the signature

of the function compose, enabling composi-

tion of open coalgebras.

Figure 3.6: First attempt at defining composition of coalgebras with (mutual) depen-

dencies.

additional reflection based implementation available under a unified API and thus

c) supports both macro and reflection based implementations which can be used in

parallel due to shared type classes With and WithF; the latter d) allows composition

of type constructors using rank-2 types.

3.3 Expressing Dependencies

In the beginning of the last section we have seen how separately defined coalgebras

for different functors can be composed to yield a coalgebra for the intersection of the

functors. However, we required them to be semantically unrelated and thus the two

coalgebras could not refer to each others definitions, hindering reuse of implementa-

tion. In class-based object oriented languages it is common to specify dependencies

on other components over the type of the late-bound pointer to self . Dependencies

are either expressed structurally by marking members as abstract or nominally by

extending other implementations or adding required interfaces to the self-type (Oder-

sky and Zenger, 2005). It is important to distinguish the two. While the use of the

extends keyword explicitly binds the reference super to the specified class, using

self-type annotations we only express an upper bound of the type of the reference

self . The requirement can be fulfilled by a superclass, by a subclass or even by the

class itself that is being defined. In this section we will focus on dependencies as they

are expressed by self-types annotations.

The current definition of coalgebras only consists of the type of the state and

the interface endofunctor. Thus it is not possible to express dependencies to other

coalgebras in the type of a coalgebra as it is defined at the moment. Like we have

seen above, dependencies can be articulated over the self-type, that is, requirements

on the type of self . The special variable self is bound late by constructing the fixed

point of a function Self ⇒ Self at the time of object creation. We can use this idea of

linking components over the self-reference to allow expressing dependencies between

coalgebraic components.

Modeling open-recursion via a fixed point construction is a well known technique

(Cook and Palsberg, 1989; Pierce, 2002; Oliveira et al., 2013). In the context of

object algebras, Oliveira et al. (2013) introduced a type Open that allowed imposing

requirements on the self-reference of an object algebra.
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trait SkipF [S ] {
def skip:S

}

(a) Interface functor.

val SkipC :OpenCoAlg [(CounterF WithF SkipF )#Apply, SkipF , Unit]

= self ⇒ state ⇒ new SkipF [Unit] {
def skip = self (self (state).inc).inc

}
(b) Coalgebraic implementation of the skipping counter.

Figure 3.7: Interface functor and an implementation as OpenCoAlg for a Counter

with “skipping” functionality.

3.3.1 Dependend Coalgebras: a First Attempt

Following (Oliveira et al., 2013), we can introduce the type OpenCoAlg as in Fig-

ure 3.6a. The upper bound Self <: Prov guarantees that all methods available on the

provided interface can also be used on the self-reference. That is, given the coalgebra

CoAlg [Self , S ] representing the overall aggregate of all component coalgebras and

the current state of type S we can compute the provided interface Prov [S ]. Since

the self-reference is bound late, it can contain implementations from other coalgebras

that have been composed with the current one. Hence, single instances of OpenCoAlg

can in general be incomplete, reminiscent of incomplete classes in (Bettini and Bono,

2008).

This definition looks fine at the first glance so we can try to define an updated ver-

sion of the function compose for two instances OpenCoAlg . The signature of compose

can be seen in Figure 3.6b.

Both, the type of the self-references, as well as the type of the provided interface

are aggregated by means of the intersection operator WithF. By aggregating both

sides, the provided interfaces of the coalgebras can mutually implement the required

interfaces. Loosely speaking, both required as well as provided interfaces will even-

tually level up to the same set of interfaces, allowing the self reference to be closed.

Since for creating the fixed point a function Self ⇒ Self is required, we only can close

the self-reference when Self and Prov agree.

When trying to implement this new version compose we could chose the same

strategy as in Figure 3.3: Projecting into the state before applying a coalgebra and

then mapping the result back to the tupled state. This implementation strategy

however has some problems as becomes visible in the following simple example.

Let us extend the Counter example with an additional interface SkipF (defined in

Figure 3.7a), enhancing the counter with a method skip, that should invoke inc twice

to skip one intermediate count. We can implement SkipF coalgebraically by means

of OpenCoAlg , as in Figure 3.7b. Composing SkipC with a CounterF coalgebra

immediately reveals a problem: A call to skip only increases the counter once.

Why is this the case? The type of state only accounts for one slice of the state

relevant for the single component at hand, here Unit. Changes to other parts of the

object state are simply ignored by the assumed implementation of compose that uses

tupling as in Figure 3.36.

3.3.2 Taking the Residual State into Account

The previous attempt of defining compose showed that it is not enough to consider

only the part of the state that is in focus when defining a particular open coalgebra.

The state of an object that has been instantiated from the result of composing multiple

6The implementation strategy of tupling the state would work for the subset of coalgebras that

use self at most once in each method implementation.
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(a) Using lenses to access private slices of state of a “skip-

counter-object”.

trait Lens [S , T ] {
def get (s: S ): T

def set (s: S , t : T ): S

}
(b) Signature of a lens to focus

T within S .

Figure 3.8: Lenses can be used to focus on a private slices of state in the general

frame, the unknown residual.

coalgebras consists of many disjoint slices that are private to the individual coalgebras.

Since method invocations performed via the self-reference might lead to changes of

different parts of the state, it is not enough to just take the private state of each

individual coalgebra into account. We also have to consider the frame7 representing

the rest of the object state, in which the change to the state occurs (private to some

other module)

However, when defining an open coalgebra it is impossible to know what the frame

will be, since the coalgebra could be composed with another one, defined in a separate

module. Hence, the definition has to be valid for all possible frames.

To this end, we introduce the notion of a FramedDefinition.

trait FramedDefinition [Def [ ], State ] {
def apply [Frame ] (priv : Lens [Frame, State ]): Def [Frame ]

}

A framed definition allows specification of the private state, as part of a context

(unknown by parametricity) of type Frame. The “as part of” relation is modeled

using a Lens. Lenses are a programming concept heavily used in the programming

language Haskell. Figure 3.8b defines a Lens [S , T ] as a pair of methods get and set8.

In our context, the first method, get allows projecting the private slice of type T out

of a general frame of type S , while the second one allows updating the projected part

inside a frame with a new slice of type T . In addition we assume that composition

of lenses is defined, such that a lens l1 with type Lens [S , T ] and a lens l2 with type

Lens [T , U ] can be composed via l2 compose l1 to a lens of type Lens [S , U ].

7We have chosen the name frame to match a similar concept in the field of artificial intelligence,

as pointed out by Tillmann Rendel in personal communication.
8 The interface Lens is reminiscent of a coalgebra for a constant type T . And right-

fully so: Currying the state S and fixing T we get the coalgebra S ⇒ LensF [S ] with

trait LensF [S ] {def get : T ;def set (t : T ): S }. The exact relationship between lenses and coal-

gebras is described by Gibbons and Johnson (2012) and will not be of further interest, here.
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A framed definition can thus be interpreted as:

Given a lens that allows accessing a known part of the state within a frame,

a definition in the general frame can be provided.

Equipped with framed definitions, open coalgebras can be defined within a frame

(representing the overall object state) as follows:

type OpenCoAlg [Self [X ]<: Prov [X ], Prov [ ], S ] =

FramedDefinition [({
type Apply [T ] = CoAlg [Self , T ]⇒ CoAlg [Prov , T ]

})#Apply, S ]

Inlining FramedDefinition, the same type can equivalently be given by the slightly

more readable variant, defined in Figure 3.9a. Equipped with this new definition

of OpenCoAlg we now can implement the compose operation as in Figure 3.9b. The

implementation assumes the presence of the two lenses first and second , corresponding

to the first and second projection into a tuple. The result of the composition again is

a open coalgebra with aggregated self-types and provided interfaces.

Figure 3.8a visualizes an object that has been instantiated from two coalgebras,

one contributing the implementation for CounterF and the other contributing the

implementation for SkipF . The state S thus of two private slices that can be accessed

by the coalgebras via Lens [S , Int] and Lens [S , Unit], respectively.

3.3.3 Closing Open Coalgebras

In order to define unfold for open coalgebras (to ultimately allow instantiating objects)

we need a means to close the self-references. To this end, following (Oliveira et al.,

2013), we can use a lazily computed fixed point expressed in terms of fix which is

defined as follows:

def fix [R ] (f :(⇒ R)⇒ R): R = {lazy val res: R = f (res); res }

Here, the argument type of f is marked as being lazily evaluated (by prefixing the

type with ⇒), which is necessary to prevent non-termination.

Only those open coalgebras where Self and Prov are instantiated with the same

interface functor F can be closed. The reason is that only those coalgebras can be

passed as self-reference to themselves, self-sufficiently satisfying the required interface

with the interface they provide. We call this subset of open coalgebras complete

coalgebras – a type alias CompleteCoAlg is defined in Figure 3.9c.

Figure 3.9c defines the function close that takes a CompleteCoAlg [F , S ] and

returns a CoAlg [F , S ] by closing the self-reference. The closing is achieved by com-

puting the fixed point of the complete coalgebra9. The function id is defined as the

identity lens with type Lens [R, R ] for all R.

Finally, we can give the definition for the function unfold in Figure 3.9c. Compared

to the definition of unfold in Section 3.1, the only change that has to be made is closing

the complete coalgebra before applying the state to it.

Using the new definition of open coalgebras we now can redefine the skip counter

implementation SkipC as in Figure 3.9d and compose it with the correspondingly

redefined Counter to obtain a complete coalgebra. The complete coalgebra in turn

can be instantiated using the initial state (0, ()). The last line of the following example,

9The parameters self and state are repeated, as opposed to the shorter version fix {co [S ] (id)},
in order to allow the compiler to infer a lazy argument type for self
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trait OpenCoAlg [Self [X ]<: Prov [X ], Prov [ ], S ] {
def apply [T ] (priv : Lens [T , S ]): CoAlg [Self , T ]⇒ CoAlg [Prov , T ]

}
(a) Open self-references allow specifying dependencies on the self-type.

def compose [

Self 1[X ]<: Prov1[X ], Prov1[ ], S1,

Self 2[X ]<: Prov2[X ], Prov2[ ], S2 ] (

co1: OpenCoAlg [Self 1, Prov1, S1 ],

co2: OpenCoAlg [Self 2, Prov2, S2 ])

= new OpenCoAlg [(Self 1 WithF Self 2)#Apply, (Prov1 WithF Prov2)#Apply, (S1, S2)] {
def apply [T ] (priv : Lens [T , (S1, S2)]) = self ⇒ state ⇒ {

val left = co1[T ] (first compose priv) (self )

val right = co2[T ] (second compose priv) (self )

mix [Prov1[T ], Prov2[T ]] (left (state), right (state))

}
(b) Composing two separately defined coalgebras with (possibly) mutual dependencies.

type CompleteCoAlg [F [ ], S ] = OpenCoAlg [F , F , S ]

def close [F [ ], S ] (co: CompleteCoAlg [F , S ]): CoAlg [F , S ] =

fix [CoAlg [F , S ]] {self ⇒ state ⇒ co [S ] (id) (self ) (state)}
def unfold [F [ ]: Functor , S ] (co: CompleteCoAlg [F , S ]): S ⇒ Fix [F ] =

state ⇒ new Fix [F ] {def out = map (close (co) (state)) (unfold (co))}
(c) Closing and unfolding complete coalgebras.

val SkipC = new OpenCoAlg [(CounterF WithF SkipF )#Apply, SkipF , Unit] {
def apply [S ] (priv : Lens [S , Unit]) = self ⇒ state ⇒ new SkipF [S ] {

def skip = self .apply (self .apply (state).inc).inc

}
}

(d) Coalgebraic implementation of the skipping counter.

Figure 3.9: Core Encoding Part I : coalgebra composition. Expressing dependencies

between separate coalgebra definitions.
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containing the println statement, illustrates method access on the constructed object

and will yield 3 when executed.

val both = compose (Counter , SkipC )

val c = unfold (both, (0, ()))

println (c.out .skip.out .inc.out .get)

In this section we have seen how coalgebras implementing interface functors can be

defined in separation, articulating their dependencies to other coalgebras. To this end,

we introduced the notion of open coalgebras expecting a late bound self-reference as

first argument. An instance of OpenCoAlg thus is not complete in general. OpenCoAlg

shares this property with the incomplete classes as introduced by Bettini et al. (2004).

In contrast, as opposed to open coalgebras, where only the subset of complete coalge-

bras can be instantiated, incomplete classes can always be instantiated to incomplete

objects, which than in turn can be composed with complete objects, only. However,

(Bettini et al., 2004) lacks a mechanism of composing several incomplete classes to

a complete class, which is possible with self-type annotations. Open coalgebras also

can be compared to open mixin components in the denotational model of inheritance

by Oliveira et al. (2012), based on the denotational semantics presented by Cook and

Palsberg (1989). Both, the coalgebraic encoding presented here, as well as the de-

notational model use open recursion as primary means for modular refinement. The

model of inheritance defines composition for mixin components which can be arbi-

trary functions. Since coalgebras are functions S ⇒ F [S ] the coalgebraic encoding

can be seen as an instance of the denotational model. However, in (Oliveira et al.,

2012) mixins only describe a refinement of the base implementation. Hence, the fine

grained (nominal) support for specification of requirements as implemented by open

coalgebras is missing. The encoding presented in this section is probably closer to

open generalized object algebras in (Oliveira et al., 2013). However, Oliveira et al.

use self-references to modularize objects algebras (compositional algorithms, defined

on different variants) while in this section we have seen how to modularize interface

definitions of one object.

3.4 Dynamically Extending Objects

The last section showed how to express dependencies between separately defined coal-

gebras by means of OpenCoAlg . For Scala programmers, this might not seem like an

exciting new feature. Self-type annotations already fulfill a similar purpose in Scala.

However, as opposed to traits, coalgebras are first-class values in our encoding. They

can be passed as arguments and they can be stored in data structures. This allows a

dynamic selection of the implementation of an object at runtime before the object is

instantiated.

While dynamic coalgebra composition is an important step-stone, let us reempha-

size the ultimate goal of our encoding: dynamic specialization of objects. Dynamic

specialization means that objects can be extended with new operations and modified

behavior after their construction. Up to now, coalgebras can be defined as implemen-

tations of interfaces and objects can be instantiated by unfolding complete coalgebras.

However, after an object has been created the implementing coalgebra as well as the

type of the state are hidden behind the fixed point Fix [F ]. This forbids to exchange

the coalgebraic implementation underlying an object of type Fix [F ] from the out-

side, hindering the addition of new operations. So how can we possibly modify the

encoding to also support dynamic extension of objects?

In order to answer this question, we have to call to mind how objects are modeled
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Figure 3.10: Adding extension points to the infinite tree of observations – the terminal

co-algebra.

in a coalgebraic encoding. In Figure 3.1c we have seen the infinite tree of observations,

a visualization of the terminal coalgebra for the interface endofunctor, representing an

object as the greatest fixed point of that interface. Each possible future state of the

object is contained in the tree as a node derived by a finite number of observations from

the initial state. Every node contains child-nodes for every possible observation that

are implemented by performing the next layer of unfolding using the state represented

by the node itself.

Importantly, every layer of unfolding is performed lazily only before the next

observation is made – each time offering the chance for a refinement of the underlying

coalgebra. It is this observation, that equips us with the tool to dynamically specialize

the implementation of an object for the next layer of unfolding. In the remainder of

this section, we will see how a modification of the fixed point Fix allows inserting

extension points at every node of the observational tree.

The idea of extensible terminal coalgebras is illustrated by example in Figure 3.10.

For this purpose, the tree of observations is shown for the following example pro-

gram10:

val c0 = unfold (Counter , 0)

val c1 = c0.out .inc

val c2 = c1.extend (SkipC , ())

val c3 = c2.out .skip

Unfolding the Counter coalgebra with an initial state 0 results in an object of type

Fix [CounterF ], depicted by node c0. Compared to the original model in Figure 3.1c,

the extended model now offers two different actions on an object.

Firstly, as before, the observations described by the corresponding functor can be

made. To this end, a call to out triggers one additional unfolding operation yielding

10Here the method extend is displayed as keyword to highlight its importance in our encoding.
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an instance of CounterF [Fix [CounterF ]]. This way the successor state c1 is reached

by first unfolding one layer and then calling the observation inc on the resulting

structure. The process of unfolding that is necessary to make observations is depicted

by the dotted circular boundary.

Secondly, as a new operation, the underlying coalgebraic implementation can be

extended. To this end, an additional coalgebra that might be defined over a different

functor, can be internally composed with the original coalgebra to result in an object

that allows observations provided by both coalgebras.

In this sense, state c2 is special. It is reached by invoking extend on the existing

object c1 with the coalgebra SkipC , adding an implementation for the SkipF interface.

As a result, after the next call to out the available observations on c2 got augmented

with the method skip. The extended terminal coalgebra (represented by the subtree

rooted at c2) is defined over a different interface endofunctor than the coalgebras

represented by the subtrees rooted at c0 and c1. While the latter two are CounterF -

coalgebras, the one at c2 is a (CounterF with SkipF )-coalgebra.

Allowing the terminal coalgebra at every level of unfolding to change the functor

it is defined over can be considered the major technical novelty introduced by this

thesis.

3.4.1 Semantics of extend

While the example in Figure 3.10 provided some intuition about the operational

behavior of dynamic specialization we will now capture the semantics of extend

more formally.

For our purpose, let uppercase letters (A, B , ...) refer to coalgebras and let be the

state s be indexed by the corresponding coalgebra. We define dynamic specialization

in obj .extend by the following equation:

unfold(A, sA) extend(B, sB)
def
= unfold(compose(A,B), (sA, sB)) (3.1)

Representing an object by the unfolding of its implementing coalgebra A and the

current state sA, the extension with an additional coalgebra B and the corresponding

state sB is defined by the unfolding of the composed coalgebras applied to the tupled

state. The composition of coalgebras here refers to the operation compose as defined

in Figure 3.9.

In the case that state modifying observations have been triggered between instan-

tiation and extension, those are reduced first. This is illustrated by the following

example:

unfold(A, sA).obs extend(B, sB) = unfold(A, s′A) extend(B, sB)

= unfold(compose(A,B), (s′A, sB))

Here s′A is the the state resulting from the triggered observation obs, given by

A(sA).obs.

Associativity. We can notice that composition of coalgebras is associative:

compose((compose(A,B, )), C) = compose(A, (compose(B,C)))

We will informally argue, why this is the case by considering three aspects of the

semantics of the resulting object: a) the set of methods in the interface as reflected

by the type, b) the defined behavior of the methods, c) the binding of self-references.
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– The composition operator creates a coalgebra implementing the intersection of

the original functor interfaces. An instance created by unfolding the resulting

coalgebra hence implements both interfaces – composition is monotonic. As a

result, the order in which composition is performed has no influence on the set

of implemented methods.

– When composing two coalgebras, the latter can override methods of the first.

This is necessary to refine behavior of existing methods in extensions. Hence, if

C overrides a method of the composition of A and B , then it will also override a

method in B and subsequently in A. The same is true for the opposite direction.

– Unfolding a composed coalgebra will always bind the self-reference to the overall

composite. Thus, there is the order of composition has no effect on the binding

of self-references.

We conclude that compose is associative.

Commutativity. However, both extend and compose are not commutative. While

the same argument for the set of methods and the binding of the self-refences would

still hold, the semantics of overriding depends on the order of the coalgebras and

thus is non-commutative. For similar reasons there is no distributivity of extend and

triggered observations.

Limitations of equational reasoning. Equation 3.1 defines extend in terms of

compose, thus it is always safe by definition to replace a program matching the left-

hand-side of the equation with the corresponding program on the right-hand-side of

the equation. This can be interpreted as: Every dynamically specialized object could

also be an instance of dynamically composed classes. However, the opposite is not

the case. In our encoding it is not possible to instantiate every class (represented by

a coalgebra) to specialize it later.

A simple example in Scala can illustrate this limitation. Assuming that a trait

A has abstract members that are only implemented by a different trait B . We can

instantiate A with B but not A alone since it has unimplemented members In terms

of our coalgebraic encoding this equivalent to the restriction that only complete coal-

gebras might be unfolded. While we always know that the result of extending a

complete coalgebra will be a complete coalgebra as well, it is not the case that the

left-hand-side A of every complete composition compose (A, B) is complete as well.

3.4.2 Implementation of extend

To account for the two different actions out and extend that can be performed on

a terminal coalgebra we need to adapt the interface of Fix . Figure 3.11 shows the

modified definition. Fix has been augmented with the new method extend which

takes a open coalgebra co2 and the second state component state2 necessary to unfold

co2. In addition to the two arguments it also expects evidence that co2 is defined

over a functor G . The result of extend is the terminal coalgebra defined over the

intersection of the two functors F and G . Figure 3.11 also shows the implementation of

the method extend as part of the modified function unfold11. Reusing the definition

of compose from Figure 3.9b the implementation just amounts to composing the two

coalgebras and recursively unfolding the result with the tupled state. Since unfold

11For ease of presentation, the handling of type-tags is omitted. The acquisition and threading of

type-tags through the methods calls is purely technical and does neither contribute to the semantics

of unfold nor to that of extend.
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trait Fix [F [ ]] {
def out : F [Fix [F ]]

def extend[G [ ]: Functor , S2 ] (

co2: OpenCoAlg [(F WithF G)#Apply, G , S2 ],

state: S2): Fix [(F WithF G)#Apply ]

}
def unfold [F [ ]: Functor , S1 ] (co1: CompleteCoAlg [F , S1 ]): S1 ⇒ Fix [F ] =

state1 ⇒ new Fix [F ] {
def out = map (close (co1) (state1)) (unfold (co1))

def extend[G [ ]: Functor , S2 ] (

co2: OpenCoAlg [(F WithF G)#Apply, G , S2 ],

state2: S2): Fix [(F WithF G)#Apply ] =

unfold (compose (co1, co2)) (merge [F , G ]) ((state1, state2))

}

Figure 3.11: Core Encoding Part II : Allowing later extension of objects by augmenting

the fixed point construction. Differences to the previous versions of Fix in Figure 3.2c

and unfold in Figure 3.9c are highlighted in gray

requires evidence that the passed coalgebra is defined over a functor, a merged functor

instance is created by calling merge [F , G ]. The merged functor instance is defined by

point-wise applying map defined in Functor [F ] and Functor [G ] to the intersection

F [A] with G [A] before composing the results using an instance of F WithF G .

The encoding of the fixed point using a trait (or case class) Fix , often is just a

necessary workaround in languages like Scala that only support isorecursion but not

equirecursion. In Haskell a newtype declaration is often used instead, erasing the

distinction between both sides of the equation after type-checking:

newtype Fix f = In (f (Fix f ))

In this thesis, having a manifestation of the fixed point at every level of recursion

is essential. It allows a covariant refinement of the interface endofunctor F that

Fix is defined over. In addition, the requirement that methods can be overridden

and redefined is implemented by the right biased nature of the object composition

operator mix .

As noted earlier, the type of the private state S1 and the original coalgebraic im-

plementation are hidden after unfolding to the greatest fixed point Fix [F ]. However,

both the state as well as the coalgebraic implementation are stored in the closure of

extend and hence enable a later retroactive refinement.

In this section we have seen how the greatest fixed point (the terminal coalgebra)

can be augmented to account for extension points at every layer of unfolding. The

the definition of extend in Equation 3.1 illustrates that we reduce the problem of

dynamically extending objects to the problem of dynamically composing coalgebras.

The technical implementation of this process is twofold: Composition of the internal

state which is passed to the component coalgebras and composition of the interface

functors F and G , building on the results of Section 3.3 and Section 3.2, respectively.

Neither the type of the state nor the original coalgebra are revealed. They are

stored in the closure of extend. Calling extend with another coalgebra, can be seen

as instantiating the extension point in the observation tree with the result of unfolding

the composed coalgebra to the observational tree with a (possibly) different shape.

36



3.4.3 Subtyping

While we have modeled a form of dynamic inheritance in the last subsections, sub-

typing has yet to be discussed. From the tight coupling between inheritance and

subtyping as known from object oriented languages, one might assume that an object

created from a CounterF -coalgebra, extended with a SkipF -coalgebra can be used

both as a Counter -object and a Skip-object since it implements both interfaces.

val c = unfold (Counter , 0).extend (SkipC , ())

val simpleCounter : Fix [CounterF ] = c // Type Error

However, the above assignment fails with a type error in Scala. The type of c, namely

the fixed point of the intersection functor Fix [CounterF with SkipF ] is not a subtype

of the fixed point of one component Fix [CounterF ]. At the same time, one might

assume that a coalgebra like Counter with a self-type of CounterF can be used to

repeatedly extend c which does implement both CounterF and SkipF . This is useful

for instance to reset the counter to zero.

c.extend (Counter , 0) // Type Error

Surprisingly the above line of code also fails with a type error, even though the

requirements of Counter are overly fulfilled by c.

There is a simple technical explanation for both failures. Both, coalgebras and the

objects instantiated from them are parametric in their type. The type parameters of

coalgebras are used to articulate dependencies and the type parameter of the fixed

point Fix expresses the implemented interface. However, all definitions of coalgebras

and fixed points we have seen so far missed variance annotations (mainly for ease

of presentation) at their type parameters and so the Scala compiler infers the type

constructors as invariant in their type parameters.

The remainder of this subsection is a systematic overview how to add variance

annotations to the previous definitions.

Variance annotations allow to describe the polarity of type constructor arguments.

Interpreting a type constructor of kind ∗ → ∗ as endofunctor F over the category Set

than the type constructor is said to be covariant if for each morphism A ⇒ B it

associates a morphism F [A ]⇒ F [B ], that is, in the interpretation of types: “if A is a

subtype of B , then also F [A ] is a subtype of F [B ]”. On the other hand, contravariant

functors reverse the order of the morphism and thus associate each morphism A⇒ B

a morphism F [B ]⇒ F [A] with the corresponding interpretation on types that “if A

is a subtype of B , then also F [B ] is a subtype of F [A]”. In Scala, variance can be

marked at the definition site using the annotation + for covariant (or positive) type

parameters and − for contravariant (or negative) type parameters. If no annotation

is present the type parameter is assumed to be invariant.

We will begin with restoring subtyping on objects modeled by the greatest fixed

point Fix . Since for interface functors AF and BF the fixed point of their intersection

functor Fix [AF with BF ] should be a subtype of both Fix [AF ] and Fix [BF ] the

type parameter F of Fix [+F [ ]] should be marked as covariant. Furthermore, since

unfolding Fix one layer by calling out results in F [Fix [F ]] and the type parameter

of F is invariant, the covariant type F occurs in an invariant position, as part of its

own invariant type parameter. This problem can be solved by also marking F to be

covariant in its type parameter. Thus the annotated definition of Fix reads:

trait Fix [+F [+ ]] { ...}

The method extend in trait Fix has the result type Fix [(F WithF G)#Apply ].

This forces us to mark the type parameter of (WithF)#Apply and in consequence the
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arguments of the type constructor parameters to WithF also as covariant, leaving us

with the updated definition of WithF.

trait WithF[F [+ ], G [+ ]] {
type Apply [+A] = F [A ] with G [A ]

def apply [A ] (fa: F [A ], ga: G [A ]): Apply [A ]

}

The above changes also impose the additional requirement that all interface end-

ofunctors must be covariant. This is the case for all examples we have seen so far.

However, it prevents the self-type of a functor to be used for method arguments, since

those are negative occurrences.

Of course all methods that are parametrized over an interface endofunctor like

unfold and compose also have to be adapted to account for the covariance of the

functor. The full source code, containing all necessary variance annotations can be

found in our online distribution.

In addition to the result type of the method extend, type parameter F also

occurs as component of the self-type requirement on OpenCoAlg . The resulting vari-

ance conflict coincides with the desired subtyping relationship of open coalgebras.

Open coalgebras should be contravariant in their requirements and covariant in their

provided interface.

Updating the definition of OpenCoAlg thus amounts to:

trait OpenCoAlg [−Self [+X ]<: Prov [X ], +Prov [+ ], S ] {...}

This concludes the development of an coalgebraic encoding that allows the modu-

lar definition of objects with regard to temporal decomposition criteria. In particular,

dynamic specialization of objects is supported by the means of inserting extension

points at every layer of unfolding. Adhering to the principle of information hiding,

the extension of objects does neither reveal the internal state nor the original coal-

gebraic implementation. Instead, the state as well as the implementation are stored

in the closure of Fix – only to be composed with future extensions by means of the

composition operator on coalgebras: compose. To allow a consistent handling of pri-

vate state in presence of multiple participating coalgebras, Lenses are used for access

and modification of the corresponding state-slices. Finally, the subtyping relation-

ship between instantiated objects as well as implementing coalgebraic fragments are

restored, guaranteeing that extension of objects is a safe monotonic operation.
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Chapter 4

Possible Extensions

After having developed the core of the encoding over the course of the last chapter,

the current chapter will discuss two extensions to the core. The first extension al-

lows explicitly calling overridden methods of the extended base object. The second

extension builds on the first and additionally implements selective open recursion, a

feature less wide-spread.

Both extensions are summarized by example in Figure 4.1. The depicted arrows

have a single coalgebra as the source and another (possibly composed) coalgebra as

the target. An arrow hence describes the binding of the labeled reference for a given

coalgebra.

4.1 Extension 1: Referencing the Base

The core introduced in the last chapter allows dynamically specializing objects by

extending the interface functor the terminal coalgebra is defined over. One special

case is when the interface of the extension has a non empty intersection with the

interface of the extended base. Since compose as introduced in Section 3.3 uses the

right-biased operator mix , the implementations in the extension will always shadow

the ones of the base. In object oriented language terminology this case would usually

be referred to as override of the intersection. However, often it is desired to not

only override implementations but to refine them. To this end, the common idiom

is to allow accessing overridden implementations via some special prefix – in many

languages this prefix is called super1.

Following the implementation pattern of late bound self-references, we can add

an additional reference base to open coalgebras. This change becomes visible in

Figure 4.2a. OpenCoAlg is redefined and a new contravariant type parameter Base

is added to the interface. At the same time coalgebras defined in the body of apply

can depend on the base coalgebra which is passed as additional argument.

An example that illustrates the usage of the newly defined OpenCoAlg can be

found in Figure 4.2d: An instrumented counter that prints a message every time the

original counter is incremented. The implementation overrides both methods get and

inc, but acts as a proxy by forwarding them to the base coalgebra. Only in the inc

case the message is printed before invoking the base coalgebra with the current state.

The semantics of the base reference is defined by the function compose in Fig-

ure 4.2b. In the signature of compose it becomes visible that co2 can depend on both

Prov1 as well as Base1. This allows accessing overridden methods that are not part of

the interface of the immediate ancestor but defined somewhere in the transitive chain

of parents. Most importantly, the base reference of the composite is passed to the first

coalgebra co1, while co1 is passed (as part of left) to co2. This assures a linearization

of the base references. The coalgebra returned by compose requires Base1 as type of

1To be precise, super has a different semantics than base-references. The receiver of calls to

super can be resolved statically. It is the superclass. In our case the base reference is bound

dynamically at extension time.
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Figure 4.1: Example reference structure using both extensions. The base reference

(Extension 1) points to the implementing coalgebra of the previously extended object,

while the curr reference (Extension 2) points to the coalgebra of the object at the

time of extension.

a future base to be composed with.

As opposed to the type parameter Self which most likely specifies an interesting

interface (after all being forced to by Self <:Prov), the type of Base might impose no

requirements. If base would be a simple type of kind ∗, we could just use the Scala

built-in type Any for this purpose. Since Base is a type constructor we introduce the

corresponding top element of the lattice for type constructors of kind ∗ → ∗ as:

type AnyF [+ ] = AnyRef

def AnyF [S ] = (s: S )⇒ new AnyF [S ] { }

The equally named method AnyF is a convenience function to define dummy coalge-

bras of type S ⇒ AnyF [S ]. Open coalgebras without requirements regarding their

base can thus be written as: OpenCoAlg [AnyF , ..., ..., ... ]. The contravariance an-

notation assures that these coalgebras can also be composed with other coalgebras

more specific in their provided interface. An example of a usage of AnyF for this

purpose can be found in Figure 4.2c. To recall, a complete coalgebra meets its own

requirements and does not depend on any further coalgebraic implementations. Thus

the type parameter of Base is instantiated with AnyF . Hence, in the implementation

of close the dummy coalgebra AnyF is passed as base reference.

Having given the differences of the necessary definitions, we know can return to

the example of the instrumented counter. Given any instance of a counter

val c: Fix [CounterF ] = ...

the refinement can be applied by extending the counter.

val instr = c.extend (InstrCounter , ())

Thus calling instr .out .inc.out .inc.out .get will print "Called inc!" twice and will

yield a counter value increased two times.

4.2 Extension 2: Selective Open Recursion

In object oriented programming languages with support for overriding and late bind-

ing sometimes refinements made in a subclass make assumptions about implementa-

tion details of the base class which are not explicitly articulated. A change of the

base class implementation, while preserving compliance to the interface, thus may vi-

olate these implicit assumptions. This problem is called the fragile base class problem

(Mikhajlov and Sekerinski, 1998).

Aldrich and Donnelly (2004) identify open recursion as the root of the fragile base

class problem: Open recursion allows subclasses to intercept calls to methods made

within the base-class, analyzing the call structure and thereby violating the principle

of information hiding.
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trait OpenCoAlg [ −Base [+ ], − Self [+X ] <: Prov [X ], +Prov [+ ], S ] {
def apply [T ] (priv : Lens [T , S ]):

CoAlg [Base, T ]⇒ CoAlg [Self , T ]⇒ CoAlg [Prov , T ]

}

(a) Adding a type parameter Base to express requirements on the parent implementation.

def compose [

Base1 [+ ], Self 1 [+X ] <: Prov1 [X ], Prov1 [+ ], S1,

Self 2 [+X ] <: Prov2 [X ], Prov2 [+ ], S2 ] (

co1: OpenCoAlg [ Base1, Self 1, Prov1, S1 ],

co2: OpenCoAlg [ (Base1 WithF Prov1)#Apply, Self 2, Prov2, S2 ]) =

new OpenCoAlg [ Base1, (Self 1 WithF Self 2)#Apply, (Prov1 WithF Prov2)#Apply, (S1, S2)] {

def apply [T ] (priv : Lens [T , (S1, S2)]) = base ⇒ self ⇒ state ⇒ {
val left = (s: T )⇒ mix [Base1 [T ], Prov1 [T ] ] (

base (s),

co1 [T ] (first compose priv) (base) (self ) (s)

)

val right = co2 [T ] (second compose priv) (left) (self )

mix [Prov1 [T ], Prov2 [T ] ] (left (state), right (state))

}
}

(b) The left coalgebra is passed as reference base to the right coalgebra.

type CompleteCoAlg [F [+ ], S ] = OpenCoAlg [ AnyF , F , F , S ]

def close [F [+ ], S ] (co: CompleteCoAlg [F , S ]): CoAlg [F , S ] =

fix [CoAlg [F , S ] ] {self ⇒ state ⇒ co [S ] (id) (AnyF [S ]) (self ) (state)}

trait Fix [+F [+ ]] {
def out : F [Fix [F ] ]

def extend[G [+ ]: Functor , S2 ] (

co2: OpenCoAlg [ F , (F WithF G)#Apply, G, S2 ],

state: S2): Fix [(F WithF G)#Apply ]

}
def unfold [F [+ ]: Functor , S1 ] (co1: CompleteCoAlg [F , S1 ]): S1 ⇒ Fix [F ] =

state1 ⇒ new Fix [F ] {
def out = map (close (co1) (state1)) (unfold (co1))

def extend[G [+ ]: Functor , S2 ] (

co2: OpenCoAlg [ F , (F WithF G)#Apply, G, S2 ],

state2: S2): Fix [(F WithF G)#Apply ] =

unfold (compose (co1, co2)) (merge [F , G ]) ((state1, state2))

}

(c) To close the self-references of a complete coalgebra, a dummy object is passed as base-reference.

object InstrCounter extends OpenCoAlg [CounterF , CounterF , CounterF , Unit] {
def apply [T ] (priv : Lens [T , Unit]) = base ⇒ self ⇒ state ⇒ new CounterF [T ] {

def get = base (state).get

def inc = {println ("Called inc!"); base (state).inc}
}

}

(d) An instrumented counter coalgebra – it requires Base to implement the interface CounterF .

Figure 4.2: Extension 1 : Allowing references to the overridden base object. Changes,

compared to the core encoding are highlighted in gray .
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Using the base-extension introduced in Section 4.1 we might implement the canon-

ical example (Steyaert et al., 1996; Aldrich and Donnelly, 2004) of an instrumented

set, that maintains the count of added elements as its state by overriding add and

addAll as follows:

...

def add (obj : Any) = {
val s = base (state).add (obj );

priv .set (s, priv .get (s) + 1)

}
def addAll (objs: Seq [Any ]) = {

val s = base (state).addAll (objs);

priv .set (s, priv .get (s) + objs.size)

}
...

This implementation makes the implicit assumption that add and addAll are defined

independent of each other. If the authors of the base class now refactor the code and

implement addAll in terms of add , elements will suddenly be counted twice.

A possible solution to this problem is to articulate more implementation details,

such that they are not hidden anymore. However, this defeats the purpose of the

principle of information hiding by allowing dependencies on information that is likely

to change (Parnas, 1972).

Another solution is introduced by Aldrich and Donnelly (2004). The authors

suggest to only selectively enable open recursion when it is necessary by means of a

modifier open. Hence, only for those methods that are marked as open, the invocation

target will be bound late.

While this declaration-site modifier cannot be supported directly, the implementa-

tion of use-site selective open recursion is straight-forward in our encoding. To allow

the user to select whether a method call should be bound late or not, both implemen-

tations the late bound one as well as the current can be passed as arguments. Building

on the base extensions, this results in the definition of OpenCoAlg in Figure 4.3a.

For a user of the encoding the only visible difference is the duplicated argument of

type CoAlg [Self , T ] passed to open coalgebras. The implementation of the compose

operator in Figure 4.3b then specifies the semantic difference between the two argu-

ments curr and self .

With every applied extension, the binding of the self-reference changes to the

outermost coalgebra. Thus, in Figure 4.1 the self-reference of all three coalgebras

point to the same target.

The curr reference of a coalgebra instead always points to the self-reference at the

time of extension with that particular coalgebra. In consequence, for the coalgebra

that has been added last there is no difference between the references curr and self .

This becomes visible with the coalgebra C in Figure 4.3b and in the implementation

of close in Figure 4.3c.

The “freezing” of the self-reference to the reference curr at the time of extension

then is modeled by the fixed point construction in Figure 4.3b.

Using this extension we now can define a set (Figure 4.3d) that behaves robust

faced with additional implicit assumptions about the internal call structure. The

method addAll now is implemented in terms of the method add defined in the current

coalgebra. Even if a subclass (an extension) like the counting set above overrides add ,

calls to curr (state).add will not be bound late and thus will not invoke the overridden

method.
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trait OpenCoAlg [−Base [+ ], −Self [+X ] <: Prov [X ] ], +Prov [+ ], S ] {
def apply [T ] (priv : Lens [T , S ]):

CoAlg [Base, T ]⇒ CoAlg [Self , T ]⇒ CoAlg [Self , T ]⇒ CoAlg [Prov , T ]

}

(a) An additional parameter in apply allows distinguishing the current and the late bound self-

reference.

def compose [

Base1 [+ ], Self 1 [+X ] <: Prov1 [X ], Prov1 [+ ], S1,

Self 2 [+X ] <: Prov2 [X ], Prov2 [+ ], S2 ] (

co1: OpenCoAlg [Base1, Self 1, Prov1, S1 ],

co2: OpenCoAlg [(Base1 WithF Prov1)#Apply, Self 2, Prov2, S2 ]) =

new OpenCoAlg [Base1, (Self 1 WithF Self 2)#Apply, (Prov1 WithF Prov2)#Apply, (S1, S2)] {
def apply [T ] (priv : Lens [T , (S1, S2)]) = base ⇒ curr ⇒ self ⇒ state ⇒ {

val left = (s: T )⇒ mix [Base1 [T ], Prov1 [T ] ] (

base (s),

fix [CoAlg [F , T ] ] {

curr ⇒ co1 [T ] (first compose priv) (base) (curr) (self ) (s)

}
)

val right = co2 [T ] (second compose priv) (left) (curr) (self )

mix [Prov1 [T ], Prov2 [T ] ] (left (state), right (state))

}
}

(b) The left-hand-side coalgebra of a composition is passed to itself as the current self-reference.

def close [F [+ ], S ] (co: CompleteCoAlg [F , S ]): CoAlg [F , S ] =

fix [CoAlg [F , S ] ] {self ⇒ state ⇒ co [S ] (id) (self ) (self ) (state)}

(c) For the outermost coalgebra the late bound self-reference and the current-reference are the same.

object Set extends OpenCoAlg [AnyF , SetF , SetF , ... ] {
def apply [S ] (priv : Lens [S , ... ]) =

base ⇒ curr ⇒ self ⇒ state ⇒ new SetF [S ] {
def add (obj : Any) = {...}
def addAll (objs: Seq [Any ]) = objs.foldLeft (state) {

case (state, obj )⇒ curr (state).add (obj )

}
}

}

(d) An implementation of a Set that is immune to the fragile base class problem.

Figure 4.3: Extension 2 : Implementing selective open recursion by passing references

to both the current as well as the late bound co-algebraic implementation. Changes,

compared to the base-extension in Figure 4.2 are highlighted in gray .

In this chapter we have seen two different extensions to the core encoding. While

the first one is fairly standard and has been used in many experiments with the

encoding (also see Section 5.1), the second extension shows that also non standard

extensions like selective open recursion are relatively easy to add to the encoding.
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Chapter 5

Evaluation and Discussion

This chapter evaluates the encoding elaborated in previous chapters by presenting

and discussing three use case examples in Section 5.1; a) a canonical example often

used to present the decorator pattern (Gamma et al., 1994), b) an example that has

been used to introduce dynamic specialization in (Ernst, 1999), and c) a more realistic

use case that translates parts of the OpenJDK implementation of stream writers to

our encoding. Section 5.2 then discusses the encoding in general, comparing it to

related work.

5.1 Usage Examples

Throughout the previous chapters we have encountered only a few examples of how

the encoding presented in this paper can be used. The running example we have seen

was a modularized variant of building counters with different sets of functionalities.

Each feature required us to improve the encoding in order to be able to support imple-

menting it. Purely functional encodings of these running examples can also be found

in (Pierce, 2002, Chapter 32). However, where these encodings target at restoring

the expressiveness of class based object-oriented languages, the encoding presented

in this thesis additionally supports the incremental construction of objects where ev-

ery stage of construction represents a valid object. At the end of Chapter 32, one

exercise is left to the reader by Benjamin Pierce: “Define a subclass of InstrCounter

that adds backup and reset methods”. In our framework we can not only define such

a subclass by simply composing InstrCounter with BackupCounter . We can also

retrofit a counter object incrementally with both, instrumentation as well as backup

functionality.

In addition to the examples from “Types and Programming Languages” that

served as a running example we also translated two other small use cases from liter-

ature as well as a medium size case study which is closer to real world problems. In

the remainder of this section we will briefly discuss these three usage examples.

5.1.1 Window Decorators

The decorator pattern is a wide-spread programming technique for dynamically chang-

ing program behavior and enriching objects with new functionality. As discussed in

Section 2.2.3, the decorator pattern also comes with a number of deficiencies that

are targeted by the encoding in this thesis, namely (a) composition of independently

defined decorators that each add to the interface and (b) late binding of methods.

To facilitate comparison of the decorator pattern with our solution we translated

the canonical example from (Gamma et al., 1994) to the encoding presented in this

thesis. Since decorators enable refinement of method implementation by forwarding

to the decorated object we chose the core encoding enhanced with the extension for

referencing the base as introduced in Section 4.1.
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The example is set in the context of graphical user interface programming. A

TextView is a visual component that allows rendering text in a graphical pane. The

two decorators ScrollDecorator and BorderDecorator both allow decorating visual

components while the first also adds the method scrollTo and the latter adds the

method drawBorder .

In comparison with the decorator based implementation it becomes visible that

the interfaces TextView , ScrollDecorator and BorderDecorator can be specified com-

pletely independent of each other. The inheritance structure, with all three interfaces

being a subtype of a common superclass, as required by the decorator pattern is not

mandatory with our encoding. In general, dependencies are not longer necessarily

being expressed via the interfaces (the endofunctors) but are now articulated over the

type parameters of an coalgebraic implementation. This allows delaying the check

whether requirements are satisfied to coalgebra composition time.

As seen in the previous sections, coalgebra composition can model both static trait

composition but also dynamic specialization of objects. Although the three interfaces

can now be described in isolation, objects that feature all three interfaces can be

constructed by either

val o1 = unfold (

compose (compose (TextView , ScrollDecorator), BorderDecorator),

(("...", (5, 0)), ()))

modeling static composition, or alternatively by

val o2 = unfold (TextView , "...")

.extend (ScrollDecorator , (5, 0))

.extend (BorderDecorator , ())

modeling dynamic specialization of objects. Both objects o1 and o2 expose the same

observable runtime behavior as the variant based on the decorator pattern.

This example also shows how our encoding meets the transparency requirement,

while the decorator pattern does not. In our case the type of the composites o1

and o2 is the intersection type of all three interfaces, while the variant using the

decorator pattern would have type BorderDecorator . Hence, method scrollTo can

only be accessed in our encoding but not in the decorator pattern based solution.

Our encoding thus behaves fully transparent.

5.1.2 Incremental Object Creation

Ernst (1999) introduces incremental object creation as a disciplined way to use dy-

namic specialization. Objects that are used across module boundaries might contain

parts that are specific to certain modules. In Scala, using traits those parts can be

factored out into the corresponding module. However, the construction of objects

remains both static and monolithic. Often the responsibility for object construction

is shifted to a top-level module that also performs the wiring of all modules.

In contrast, with dynamic specialization even the module that is responsible for the

construction of objects can be oblivious of the different parts that are contributing to

the object. This has the benefit that each module is aware only of a certain partition

of the object, facilitating change of the rest without breaking that particular module.

To show that our encoding is sufficiently expressive enough to support incremental

object creation we translated the canonical example from (Ernst, 1999, Section 7.3.3)

to our encoding.

The example is set in the context of writing software for a large company with

multiple departments. The business entity, a Car , is uniquely identified by its
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registrationNumber . However, each department has its own viewpoint on the car.

The finance department views the car as Property that can be written off over time,

focusing on its price. The company-internal car rental department views the car as

Schedulable with reserve (from: Date, to: Date) as its business critical method. The

central hub is responsible for creating and managing Car objects, but is oblivious of

the different departments that use its service to get access to cars.

In our translation, each aspect of the car is modeled by an interface and its corre-

sponding coalgebraic implementation. The hub can then be implemented as follows:

val carEnhancers = ListBuffer.empty [Car ⇒ Car ]

def buildCar (regNum: Int): Car =

carEnhancers.foldLeft (unfold (Car , regNum)) {
case (car , enhancer)⇒ enhancer (car)

}

The other departments can contribute to the car construction process by registering

an car enhancer.

carEnhancers += { .extend (Property , 10500)} // finance dep.

carEnhancers += { .extend (Schedulable, ())} // rental dep.

We also could have designed an enhancer registration method that is parametrized

by an OpenCoAlg while the dynamic specialization using extend is performed inside

the hub. This is only possible because coalgebraic implementations of interfaces are

available as first-class element in the encoding, whereas traits and classes are second-

class in Scala.

After registering the enhancers, every car constructed by the method buildCar

will also implement Property and Schedulable. In order to use functionality that is

specific to one department we have to pattern match on the specialized type.

buildCar (45315).out match {case it : PropertyF [ ]⇒ println (it .price)}

This is due to the imprecision in the type of carEnhancers. Type information is lost

in the result type of Car ⇒ Car by subsumption. However, the same also holds for

the original gbeta implementation.

After all, this style of Car construction reduces the dependencies between the

departments and the hub to a minimum. Changes within one department do neither

affect the other departments nor the central hub. Dynamic specialization and first-

class patterns, that is classes as values, enable this style of programming in gbeta. Our

encoding brings a similar flexibility to the Scala programming language by allowing

retroactive extension of fixed points and representing implementations as coalgebras

which are first-class values in Scala. We were able to seamlessly translate the example

(Ernst, 1999, Section 7.3.3) to the encoding presented in this thesis, indicating that

the encoding is expressive enough to provide good support for incremental object

creation.

5.1.3 Stream Writers (OpenJDK)

In order to see how the encoding scales from small examples to more realistically

sized programs we reimplemented parts of the OpenJDK6 library1. We chose a part

of the OpenJDK that is concerned with writing characters to an output stream.

1The original source code can be found at http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/

2d585507a41b/src/share/classes/java/io/
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Figure 5.1: UML Class Diagram visualizing the subset of OpenJDK 6 that has been

translated to our encoding.

The reason for this choice is that several stream-writers are already implemented

using the decorator pattern, facilitating the translation to the framework of dynamic

specialization.

The components that have been translated to our encoding are visualized in Fig-

ure 5.1. The translated subset consists of a) the interfaces Flushable, Closable and

Appendable, b) the abstract class Writer which implements all three interface and

c) the classes OutputStreamWriter , BufferedWriter and PrintWriter , all three ex-

tend Writer . The abstract class Writer contains one abstract method write. All

other overloaded variants of write are implemented in terms of this abstract method.

The class OutputStreamWriter extends Writer and adds the implementation of the

abstract method write. Additionally, it contains the method getEncoding that is not

present in the interface of Writer . Both BufferedWriter and PrintWriter are deco-

rators for Writer and thus inherit from Writer while at the same time referencing

Writer to allow forwarding to the decorated instance. The decorator PrintWriter

also adds methods print and println for various argument types.

The translated result can be used as follows:

unfold (compose (ConcreteWriter , OutputStreamWriter))

.extend (PrintWriter , ())

.extend (BufferedWriter , BufferedWriterState ())

This creates an instance of OutputStreamWriter that is then immediately decorated

with PrintWriter and BufferedWriter . We can see that OutputStreamWriter is com-

posed with ConcreteWriter before being instantiated. Why is this the case? While

recovering many features like open-recursion, self-type annotations, referencing the

base, and private state we did not specifically address abstract members of a class.

The abstract class Writer has one abstract method write. To implement Writer coal-

gebraically we need to define the function (s: S ) ⇒ new WriterF [S ] {...}, which is
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not possible due to the abstract method hindering instantiation.

The first solution that may come to mind is to provide a dummy implementation

that raises a MethodImplementationMissing exception at runtime, if the method is

called without being overridden by another coalgebra. However, this gives rise to

two possible errors. First, one might simply forget to override the abstract method,

leaving clients of the buffered writer with the above exception at runtime. Second, an

overriding coalgebra that does implement the abstract method might perform calls

to the base reference since the method is present. This again will trigger the above

mentioned exception.

An alternative solution is to manually partition the interface of WriterF into two

disjoint interfaces AbstractWriterF and ConcreteWriterF according to abstract

flag being present on a method or not. We can then define WriterF as:

type WriterF [X ] = AbstractWriterF [X ] with ConcreteWriterF [X ]

The implementation of ConcreteWriter uses WriterF as self-type, indicating that

it also requires the implementation of AbstractWriterF . In our example this is

achieved by composition with OutputStreamWriter , a coalgebra that implements both

OutputStreamWriterF and AbstractWriterF and thus fulfills the necessary require-

ments for being instantiated.

Arguably, this solution imposes additional boilerplate on the translation of the

class Writer . However, we consider it worthwhile since it recovers the static checks

for abstract methods, present in the original.

During the development of this use case example we were faced with yet another

problem: The implementation of the method format in PrintWriter demanded us

to create a new instance of java.util .Formatter . The constructor of Formatter takes

an instance of Appendable which happens to be implemented by the class Writer

and thus also by the reference this in the original implementation. However, in the

encoding as it is, within the coalgebraic implementation we do not have access to

this. Only the late bound coalgebra is passed as an argument to the implementation.

While the encoding might be changed to also pass the fixed point of the self-type

Fix [Self ] as additional argument to coalgebraic implementations this does not fully

solve the issue.

Another problem, orthogonal to the issue of accessing the fixed point, is related

with passing references to objects at all. Since our encoding is a purely functional

one, state changing method-calls on a reference to an object handed to a client will

not be reflected in the state of the original object. Of course the client code could be

adapted to also return the object in the new state. In our case this is not possible

since Formatter is part of java.util and thus not under our control. In general, passing

references of functional objects to construct a network of collaborating objects is

non trivial. This problem is common to all functional encodings of objects but is

considered out of scope for this thesis.

Despite the disadvantages of our encoding that came to light during the develop-

ment of the case study, the translation also shows many advantages over the original

implementation.

Not surprisingly, the decorators BufferedWriter and PrintWriter can be applied

in arbitrary order and yet the methods added by PrintWriter will always be available

on the resulting objects. This is a result that has already been reported for the other

examples above.

For the same technical reasons, decorators can be immediately applied on subtypes

of classes they have been originally designed for. In the original implementation ap-

plying BufferedWriter to an instance of OutputStreamWriter would hide the method
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getEncoding , since the decorator has been designed to only decorate instances of

Writer .

Late binding of decorated methods is supported without further ado. This allowed

us to implement a logger by overriding the abstract method write, printing debug

information whenever a call is made to write. By late binding the debugging printout

will also include internal calls within the object’s implementation.

Comparing the source code of this example with the source code of the other

examples, we can notice that the ratio boilerplate / actual implementation is much

better for larger interfaces, such as the one in this example. The boilerplate necessary

to define a coalgebraic implementation does only depend on the dependencies that

are expressed over the type-parameters of OpenCoAlg . Hence, the syntactic impact

is much smaller with reasonably sized method bodies. However, we are consciously

ignoring the overhead introduced by using a functional encoding at all. This includes

threading the state through all method calls and using lenses to project into the state,

adding to the overall syntactic weight.

5.2 Discussion

Translating the examples to our encoding showed that it is possible to perform dy-

namic specialization in Scala without the need for a new compiler or a customized

preprocessor. However, the encoding is syntactically verbose compared to proposed

language extensions like generic wrappers or incremental objects, that introduce spe-

cial language constructs targeting at dynamic specialization. We can identify three

sources of verbosity:

– Definition site boilerplate. This includes the definition of the interface endo-

functors and the scaffold for specifying coalgebraic implementations. Since the

transformation from simple interface descriptions is a purely mechanical pro-

cess, we conjecture that both could be reduced by the use of annotation macros

in Scala (Burmako, 2013). In deed, Cai (2014) shows that it is at least possible

to automatically generate interface endofunctors by annotating data type dec-

larations. Future work could apply this technique to our encoding to reduce the

boilerplate necessary to define coalgebras.

– Necessary type annotations. In order to apply coalgebra composition or to un-

fold a coalgebra often explicit type annotations have to be given. With multiple

composed coalgebras and many involved interface endofunctors this quickly be-

comes rather verbose. Let us assume we want to unfold a coalgebra that is

defined over interfaces A [ ], B [ ] and C [ ], given an initial state of type S .

The type annotations amount to:

unfold [((A WithF B)#Apply WithF C )#Apply, S ] (...)

The underlying technical problem is Scala’s weak type inference for type aliases

and type lambdas (anonymous type functions) (Brown and Phillips, 2012):

[...] not a single line of the compiler was ever written with them (type

lambdas) in mind – Paul Phillips, 2012.

Our encoding depends on type functions and aliases to express the intersection

of two functors, using WithF. The same intersection type can also be expressed

using a type lambda

unfold [({type Apply [+X ] = A[X ] with B [X ] with C [X ]})#Apply, S ] (...)
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which again cannot be inferred. Improving the Scala compiler’s support for

type lambda inference would have a large impact on the syntactic weight of our

encoding.

– Threading of the state. Since our solution is based on a functional encoding

mutation of the state is modeled explicitly. This is the case for the code within

the coalgebraic implementation and for the user code using objects constructed

from coalgebras. Every state changing method call returns a newly constructed

object reflecting the updated state. As a consequence, the identity of an object

is not preserved. As seen in the use case example of OpenJDK streams, passing

around functional objects to create a network of collaborating objects is not

only syntactically challenging with our encoding.

In the following, the encoding is discussed with respect to the requirements intro-

duced in Section 2.1.

Extensibility at Runtime. Open coalgebras, representing mixins, are first-class

values in our encoding. This allows passing them as arguments to functions and cre-

ating new mixins at runtime. Our encoding shares these advantages with possibly

all encodings that are based on the representation of objects as terminal coalgebras.

However, introducing composition of coalgebras we also support the dynamic com-

position of mixins. Dynamic composition of mixins is also the foundation to extend

objects with new functionality at runtime by composing the mixin underlying the

object’s implementation with the mixin specifying the extension.

Transparency. The function mix , as introduced in Section 3.2, is the foundation for

transparency of extensions in our encoding. Applying decorators opaquely shadows

the actual type of the decorated object. In contrast, using mix and the runtime type

information stored as TypeTag in the closure of Fix , our encoding allows applying the

extension to the actual runtime interface of the object. This enables full transparency

of extensions. Our extension mechanism is monotonic – only new components to the

intersection type can be added. This guarantees that an object can always be safely

replaced with the extended version.

Late Binding. Late binding and delegation is modeled by open coalgebras. An

instance of OpenCoAlg is a function from a coalgebra representing the late bound self-

reference to a coalgebra representing the implementation of the provided interface.

The open self-reference is closed only for one level of unfolding at a time. This

allows updating the self-reference at every step of unfolding, possibly respecting future

extensions.

Permanency. An extension in our encoding is permanent. After applying an ex-

tension, all future layers of unfolding will be performed with the extended implemen-

tation.

Type Safety. The encoding presented in this thesis supports the incremental con-

struction of objects where every stage of construction is a valid object and can be used

as such. The dependencies to other implementations are encoded in Scala’s type sys-

tem and thus ensure that instances are always complete and no dynamic error such as

MethodNotFound will be raised. The embedding of the language feature of dynamic

specialization into the statically typed language Scala ensures that the encoding is

type correct, assuming that Scala’s type system is sound. Hence, using the encoding
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is more light-weight compared to fully fledged language proposals in the sence, that

no type system and corresponding soundness proofs are necessary.

A possible alternative to our encoding could be to use a mutable record of func-

tions to represent extensible objects. However, while conceptually very simple, this

alternative could not provide the necessary type safety for function calls.

Integration. One could argue that there are already exist languages that support

dynamic specialization of objects, such as gbeta (Ernst, 1999). However, for the

purpose of integration into existing software development environments, we believe

encodings are in general a good solution. While it is great to have immediate support

for a feature in a language, encodings also offer other advantages:

– Languages that are already widely used and that have a rich ecosystem might

yet miss a particular feature. With encodings these languages can be retrofitted

with the missing feature without requiring to adapt the infrastructure, such

as compilers, typecheckers or integrated development environments. Encodings

also allow prototyping language features that later may be added to a language.

Since no custom compiler or preprocessor is required to develop an encoding,

the “costs” or effort necessary to implement a language feature embedded as an

encoding as compared to implement a full programming language is expected to

be much lower. For a similar argument for embedded domain specific languages

we refer the interested reader to (Hudak, 1998).

– Encodings can help us to learn about a language feature by describing the

semantics of the feature in the well known semantics of the host language. In

our encoding it becomes visible that there are two key ingredients for dynamic

specialization: Dynamic mixin composition and dynamic update of the self-

reference. While we don’t claim to be the first to notice the relevance of the

two concepts, both find immediate correspondence in our encoding. Having a

first-class representation of mixins is an essential part of achieving both.

Our solution fulfills the requirement of reusing existing infrastructure, simply by

being an encoding. Thus the above mentioned benefits apply. However, it fails to

enable extensions of legacy objects that have not been defined using our framework.

This and other issues are addressed in an alternate encoding we developed. It is based

on boxed references, mutability and refinement of the boxed content. The alternate

encoding is still under development but first experiments gave promising results. The

full development of the alternate encoding is not part of this thesis and is left to

future work.

5.2.1 Related Work Revisited

After having discussed the technical details of the encoding, it is worth revisiting

some of the related work to highlight differences and similarities.

Both, Darwin (Kniesel, 1999) and generic wrappers (Büchi and Weck, 2000) (com-

pare Section 2.2.4), introduce the language feature of delegation in addition to inher-

itance and thereby enable some form of dynamic specialization. While we internally

also use delegation to implement object composition in Scala, the approach we take

in this thesis is different. Instead of including two orthogonal features (delegation

and inheritance) in a language we build on only one feature: first class mixins. This

enables dynamic mixin composition and dynamic specialization. In this sense, our

work is closer to the gbeta language (Ernst, 1999).
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Technically, our encoding is also quite similar to the calculus of incomplete ob-

jects (Bettini et al., 2004). In the calculus of incomplete objects, late binding is

implemented by passing the self-reference as additional argument to all methods.

What the authors call a generator, a function gen: Self ⇒ Self , creates a new record

(implementing Self ) by partially applying all methods with self and thus closing the

self-references. Instances of open coalgebras are also functions from the self-reference

to the implementation and thus are very similar to generators. An even more strik-

ing similarity is that objects in (Bettini et al., 2004) are represented as tuples that,

among others, contain the closed fixed point fix (gen) as well as the open generator

gen. Keeping a reference to gen in the tuple corresponds to storing the original coal-

gebra in the closure of Fix in our solution. While in our approach the current state

of the object is also stored in the closure of Fix , the encoding of Bettini et al. builds

on mutable state which is stored in the closure of the method implementations.

As our motivation initially came from complementing object algebras, it was not

our goal to encode incomplete objects. However, the calculus of incomplete objects is

also a good solution to allow incremental specialization. The semantics of incomplete

objects is similar to extensible objects in our encoding. An obvious difference is that

methods can be called on incomplete objects, while coalgebras (representing) mixins

are not usable on their own. For future work, we consider it a worthwhile endeavour

to find an immediate encoding of incomplete objects. Such an encoding might be

easier to use than the presented one, since it does not necessarily be “functional” –

removing the need to thread the state through every method call.
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Chapter 6

Conclusions

In this thesis, we showed how to encode typesafe extensible functional objects in Scala

building on a coalgebraic encoding of objects. On the way, we developed macros to

automatically mix Scala objects and materialize Functor instances to facilitate the

composition of coalgebras. We recovered much of Scala’s expressiveness like self-

type annotations, late binding, references to the base (similar to super) and private

state building on standard techniques of functional encodings. On top, leveraging

the composition of coalgebras and the first-class representation of the greatest fixed

point, we were able to encode dynamic specialization of objects.

We showed, that the technique of object algebras of decomposing algorithms into

traversal components can be dualized to yield dynamic specialization:

– In order to allow a modular definition of folds (that describe algorithms), object

algebras take the approach to combine the advantages of functional program-

ming and object oriented programming by encoding the style of defining func-

tions from the first in the latter paradigm. The encoding of defining functions

as object algebras turned a second class language feature (function definitions)

into a first-class object allowing to use the modularity techniques built into the

host language.

– In order to allow the modular definition of unfolds (that describe objects), the

encoding presented in this thesis, obj .extend, takes the opposite approach by

encoding the style of defining objects in object oriented programming using con-

cepts of functional programming. The encoding of defining objects as coalgebras

turned a second class language feature (class definitions) into a first-class object

allowing to use the modularity techniques built into the host language.

Our approach is quite unique. Much research has been conducted to allow dynamic

specialization in class-based languages. However, many of the proposals either require

language extensions (Büchi and Weck, 2000; Bettini et al., 2003, 2004; Bettini and

Bono, 2008) or define entirely new languages (Schmidt, 1997; Ernst, 1999; Kniesel,

1999). In contrast, we support dynamic specialization not by changing the host

language but by encoding objects coalgebraically. Our encoding obj .extend can thus

be distributed as a Scala library and does not require additional infrastructure other

than the one usually required to build Scala programs. In particular it does not

require a new compiler or custom preprocessor.

It seems that the encoding and the tools developed on the way are a good foun-

dation for further experiments with objects encodings as became evident with the ex-

tension of selective open recursion. We hope that our encoding can help understand

dynamic specialization better and at the same time that it will drive the develop-

ment of new techniques for modularizing algorithms on complex data strucutures in

languages like Scala.
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