Towards Naturalistic EDSLs using Algebraic Effects

Jonathan Immanuel Brachthiuser
University of Tiibingen, Germany

Abstract

Domain specific programming languages bridge the linguistic and
conceptual gap between domain languages and implementation
languages. One aspect of bridging the gap is to express the do-
main specific concepts in a language more natural for the domain
experts. In recent years, in linguistics, concepts from computer
science such as effect operations (e.g. shift/reset and continuations
in general) have successfully been used to provide compositional
models for natural language semantics. We propose to pick up the
old theme of naturalistic DSLs and reevaluate it in the scope of
algebraic effects. Building on the insights of linguists, we demon-
strate how linguistic features such as anaphora, quantification and
implicature can directly be implemented in the Dotty programming
language using a library for algebraic effects. As opposed to ad hoc
implementation techniques for naturalistic DSLs, systematically
using algebraic effects and effectful syntax leads to programs that
exactly communicate the usage of linguistic features in their types,
offers improved error reporting and better IDE support. We believe
that effectful syntax opens up a new interesting perspective on the
design and implementation of naturalistic DSLs.

ACM Reference format:

Jonathan Immanuel Brachthiuser. 2017. Towards Naturalistic EDSLs us-
ing Algebraic Effects. In Proceedings of DRAFT, Tibingen, Germany, 2017,
3 pages.

DOI:

1 Introduction

Bridging the conceptual gap between domain and implementation
language by designing domain specific languages (DSLs), which are
closer to the natural language, is an idea as old as it is controversial.
Natural languages have the reputation of being lexically and syn-
tactically ambiguous, having complicated and context dependent
binding structures and often a non-trivial semantics, which rarely
is compositional. In short, attributes programmers don’t like and
programming language designers are at best fascinated by. In con-
sequence, many domain specific languages are still far away from
being close to natural language. This is in particular the case for
DSLs, which are embedded into a general purpose language. With
embedded DSLs the host language additionally imposes its own
syntactical restrictions and typing discipline on the DSL designer.
While each of those limitations is addressed in its own line of work
(e.g. syntax extensions as libraries, domain specific type system
extensions) our focus here is on linguistic constructs, which are
usually neglected since they are inherently non-context-free.

In about the last decade, many developments in modelling the
semantics of natural languages have been inspired by computer
science and the theory of abstract machines and control operators
in particular. Delimited continuations (using for instance Danvy

DRAFT, Tiibingen, Germany

2017. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceedings
of DRAFT, 2017.

and Filinski’s shift and reset (1990)) have successfully been used
to model quantification (“John loves every women”), focus (“John
loves Mary”) and polymorphic coordination (“John and Mary left”)
(Barker and Shan 2004; Shan 2004, 2005).

Marsik and Amblard (2016) very recently used algebraic effects
with handlers to give a compositional semantics to deixis (“John
loves me”), quantification with scope islands and implicature (“John,
my best friend, loves me”). Algebraic effects (Plotkin and Power
2003) with handlers (Bauer and Pretnar 2015; Plotkin and Pretnar
2009), described in engineering terms, separate the declaration
of effectful operations and their usage from the implementation
in effect handlers. Typically, to implement an effect operation
the effect handlers obtain access to the delimited continuation,
that is, the remaining program after the effect usage up to the
handler. Compared to control operators, algebraic effects with
handlers closely correspond to multipromt delimited continuations
(Kiselyov and Sivaramakrishnan 2016). Roughly, every handler
introduces a prompt marker and an effect operation constitutes
a shift up to the corresponding handler-prompt. In the context
of natural language semantics, shifting to different handlers is
essential to enable disambiguation of quantifiers (Barker 2002) and
combining different scoping constructs in a single sentence (Marsik
and Amblard 2016).

While using insights from linguistics for programming language
design is an old idea (Lopes et al. 2003), in this talk proposal, we
propose to reconsider the current approach of design and imple-
mentation of embedded DSLs by taking recent developments of
computer linguistics and algebraic effects into account. We con-
jecture that algebraic effects are a solid foundation to implement
novel syntactic features for embedded naturalistic DSLs, which we
refer to as effectful syntax.

2 Effectful Syntax - Examples from Natural
Language

To provide some context and support our conjecture, this section
shows examples from natural language semantics (Marsik and Am-
blard 2016), implemented in Dotty (the Scala of the future!) using a
library for algebraic effects (Scala-Effekt?). This should serve only
as a first example domain. The idea of effectful syntax goes beyond
the domain of natural languages and we plan to collaboratively
explore other domains with the workshop participants>. Our ex-
perience in implementing these examples makes us believe that
effectful syntax is (i) modular - linguistic effects and handlers can
be encapsulated in modules, separated from the remaining syntax
(ii) learnable — separating linguistic effects from domain concepts
allows the DSL user to learn both separately, also strong (effect)
typing enables better error messages for wrong usage of linguistic
constructs (iii) maintainable — user programs concisely express

Uhttp://dotty.epfl.ch

Zhttp://b-studios.de/scala-effekt

3The full code and an interactive programming environment is available online at:
https://scastie.scala-lang.org/scfQA0CHQmMKfXxCKx7TfNgw.

http://dotty.epfl.ch
http://b-studios.de/scala-effekt
https://scastie.scala-lang.org/scfQA0CHQmKfxCKx7TfNgw

DRAFT, 2017, Tiibingen, Germany

trait Sentences[NP, S] { (effect signature)
def person(name: String): C[NP] (effect operation)
def man(person: NP): C[S] (effect handler)
def woman(person: NP): C[S]
def loves(src: NP, trg: NP): C[S]
def bestFriendOf (friend: NP, person: NP): C[S]
def said(person: NP, sentence: S): C[S]

(effect signature)
(effect operation)
(effect handler)

def forall(f: NP = C[S]): C[S] (effect signature)
def and(first: S, second: S): C[S] (effect operation)
} (effect handler)

(a) Syntax of the Sentences EDSL as a shallow embedding.

Jonathan Immanuel Brachthiuser

trait Speaker extends Eff {def speaker(): Op[NP]}

def me: NP using Speaker

def saidQuote(speaker: NP, sentence: S using Speaker): C[S]

trait Scope extends Eff {def scope[A](k:(A = C[S]) = C[S]): Op[A]}
def every(pred: NP = C[S]): NP using Scope

def scoped(f: S using Scope): C[S]

trait Implicature extends Eff {def imply(s: S): Op[Unit] }

def whols(person: NP, pred: NP = C[S]): NP using Implicature

def accommodate(f : S using Implicature): C[S]

(b) Effect signatures and handlers for the linguistic effects Speaker , Scope and Implicature .

Figure 1. Syntax of the Sentences EDSL and the interface for linguistic effects.

the use of linguistic features in their (effect) types, opening up
opportunity for refactorings and IDE support.

Figure 1a defines the syntax of our EDSL for sentences. The
type constructor C (pronounced “control”) represents effectful
computation, and is a monad provided by the Effekt library with
the corresponding monadic methods and properties. To also allow
effectful semantics of the EDSL, all return types are wrapped in C .
In the definition of linguistic effects (Figure 1b) and in user pro-
grams, we assume S and NP to be the type used for the semantics
domain of sentences and nominal phrases, respectively?.

The Speaker Effect. We begin with a simple sentence that uses the
speaker effect to refer to the contextual speaker of the sentence:

val s;: S using Speaker = john said { mary loves me}

The type annotation of sentence s; tells us that the sentence uses
the speaker effect’. Trying to run the example sentence without
providing a speaker will give an error similar to: “This sentence uses
‘me‘ and requires a speaker to be in the context”. The speaker effect
can be handled locally by using the handler saidQuote :

val sp: C[S] = john saidQuote { mary loves me}

The type of the sentence reflects that no effect is left to be handled,
so we can run the sentence to obtain said(John, loves(Mary, John)).

The Scope Effect. Passing down context information like we did
with the Speaker effect does not yet require algebraic effects with
handlers, since we could just as well have used implicits arguments
in Scala to pass down the speaker. Things become more interesting
when we consider the scope effect, which, similar to a CPS monad,
can be used to model universal quantification.

val s3: C[S] = scoped {john saidQuote every(woman) loves me}

Here, the effect operation every takes a predicate and uses the
scope effect to generate a universal quantification at the point
where the effect is handled by scoped . Running s3 , we see that
this leads to a systematic “rewrite” of the syntax tree, moving the
introduced binder up to the first occurrence of the handler scoped .

forall(x => implies(woman(x), said(John, loves(x, John))))

#We also assume variants of operations like said that are lifted to C in their argu-
ments. Following a Scala standard pattern for extension methods, binary operations
are written infix by attaching a corresponding method to the first argument (e.g.
def said(s: C[S]): C[S] for the lifted variant).

The Effekt library employs a capability passing style: capabilities are created by
effect handlers and passed down to the usage of the effect. Effekt makes use of
the recently introduced Dotty feature of implicit function types and defines the
following type alias type using[A, E] = implicit Cap[E] = C[A], which can be
used infixed in Scala. Thus, the sentence s; is equivalent to the more explicit
val s; = implicit(c: Cap[Speaker]) = john.said(mary.loves(me(c)))

The Implicature Effect. The last effect we present, implicature, is
similar to the scope effect in that it uses the continuation to achieve
a rewriting of the syntax tree.

val s4: S using Speaker =
accommodate { mary loves {john whols { _ bestFriendOf me}}}

Running the example sentence s; with speaker Pete, shows how
the annotated apposition is lifted up to the accommodate handler
and introduces a conjunction.

and(bestFriendOf (John, Pete), loves(Mary, John))

The sentence sy also shows that multiple linguistic effects can
naturally be combined. The type of statements expresses which
effects are not yet handled. The idea of effectful syntax is of course
completely independent of Scala and the sentence DSL could sim-
ilarly be implemented in other languages that support algebraic
effects and handlers. However, since we embedded the DSL into
Scala, we could customize the compile time errors, when effects are
not handled. This customization might be an interesting feature
addition for languages with native support for algebraic effects like
Koka (Leijen 2014).

3 Conclusions

In the talk, we will suggest to consider algebraic effects for the
design and implementation of more naturalistic EDSLs. We hope
that our proposal triggers a vivid discussion about other application
domains and sparks new research opportunity to develop novel
abstraction mechanisms for effectful syntax, assisting the design
and maintenance of naturalistic DSLs.

References

Chris Barker. 2002. Continuations and the nature of quantification. Natural language
semantics (2002).

Chris Barker and Chung-chieh Shan. 2004. Continuations in natural language. CW
(2004).

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and
handlers. Journal of Logical and Algebraic Methods in Programming 84, 1 (2015),
108-123.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming (LFP *90). ACM, New
York, NY, USA.

Oleg Kiselyov and KC Sivaramakrishnan. 2016. Eff directly in OCaml. In ML Workshop.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In
Workshop on Mathematically Structured Functional Programming.

Cristina Videira Lopes, Paul Dourish, David H. Lorenz, and Karl Lieberherr. 2003.
Beyond AOP: Toward Naturalistic Programming. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications (Onward!
track). ACM, Anaheim.

Jirka Mar§ik and Maxime Amblard. 2016. Introducing a Calculus of Effects and Handlers
for Natural Language Semantics. In International Conference on Formal Grammar.
Springer.

Gordon Plotkin and John Power. 2003. Algebraic operations and generic effects. Applied
Categorical Structures 11, 1 (2003), 69-94.

Towards Naturalistic EDSLs using Algebraic Effects

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In European
Symposium on Programming. Springer, 80-94.

Chung-chieh Shan. 2004. Delimited continuations in natural language. In Continuation
Workshop.

Chung-chieh Shan. 2005. Linguistic Side Effects. In In Proceedings of the Eighteenth
Annual IEEE Symposium on Logic and Computer Science (LICS 2003) Workshop on
Logic and Computational. University Press.

DRAFT, 2017, Tiibingen, Germany

	Abstract
	1 Introduction
	2 Effectful Syntax – Examples from Natural Language
	3 Conclusions
	References

