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Abstract
Algebraic effects are an interesting way to structure effectful
programs and offer new modularity properties. We present
the Scala library Effekt, which is implemented in terms of a
monad for multi-prompt delimited continuations and cen-
tered around capability passing. This makes the newly pro-
posed feature of implicit function types a perfect fit for the
syntax of our library. Basing the library design on capability
passing and a polymorphic embedding of effect handlers fur-
thermore opens up interesting dimensions of extensibility.
Preliminary benchmarks comparing Effekt with an estab-
lished library suggest significant speedups.
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1 Introduction
Consider the following piece of code that uses two effect
operations flip for nondeterministic coin flipping and raise
for exception raising:
val prog : Boolean using Amb and Exc =
if (x ⩽ 0) flip () else raise ("too big")

It expresses its use of algebraic effects in the type of prog by
mentioning the corresponding effect signatures Amb and
Exc. The program leaves open the concrete semantics of the
effect operations.
We can, for instance, use the effect handler AmbList to

handle the Amb effect and the effect handler Maybe to han-
dle the Exc effect. The AmbList handler gathers all results
of a nondeterministic computation into a list and the Maybe
handler returns None if the program raises an exception.
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val res1 : C[Option[List[Boolean]]] = Maybe {AmbList {prog } }
val res2 : C[List[Option[Boolean]]] = AmbList {Maybe {prog } }

We can see in the type of results that the order of handling
matters, a distinguishing feature of algebraic effects with
handlers. Running the two programs (for x ≡ 0) will result in
Some (List (true, false)) and List (Some (true),Some (false)) .
What looks like code written in an extension of Scala

enhanced with algebraic effects and handlers, is actually
Dotty using our library Effekt1, which we present in this
paper. Effekt is based on a monad for multi-prompt delimited
continuations [Dyvbig et al. 2007] and a shallow embedding
[Hofer et al. 2008] of effect handlers.
In the development of the library, we always strived for

simplicity from the perspective of an effect user and tried
to minimize type annotations and advanced type level pro-
gramming. We made design decisions in favor of passing
down information which integrates well with Dotty’s sup-
port for implicit function types and provides evidence of the
usefulness of this feature.

The combination of recently proposed Scala features (im-
plicit function types, second class values) and well estab-
lished Scala features (path dependent types and singleton
types) provides a good foundation for a library for algebraic
effects with handlers. We believe that the properties of its
design can lead to a wider adoption of algebraic effects and
handlers in Scala and object oriented programming in gen-
eral.

In particular, this paper makes the following contributions:
• section 2 introduces the usage of our library, explains
how it uses implicit function types and elaborates on
the above examples.
• section 3 relates algebraic effects and handlers to the
expression problem, explores several dimensions of
extensibility and shows how Effekt supports them.
• section 4 compares our design decision in favor of
capability passing to other solutions from related work.
It further sketches how second class values can help
to improve the safety of our library. Finally, it reports
preliminary performance results.

We hope that this short paper can draw the attention of the
Scala community to effect implementation techniques other
than those based on freer monads and that it motivates future
research for better language support of algebraic effects as a
library.

1http://b-studios.de/scala-effekt/
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type using[A,E ] = implicit Cap[E ]⇒ C[A]
type and[A,E ] = implicit Cap[E ]⇒ A

def use[A] (c : Cap[ ]) (f : CPS[A, c.handler .Res ]) : C[A]
def handle (h : Handler[ , ]) (f : h.R using h.type) : C[h.Res ]
def run[A] (c : C[A]) : A

type CPS[A, Res ] = implicit (A⇒ C[Res ]) ⇒ C[Res ]
def resume[A, Res ] (a : A) : CPS[A, Res ] = implicit k ⇒ k (a)

trait Eff { type Op[A] }

trait Cap[+E ] {val handler : Handler[ , ] with E }

trait Handler[R0, Res0] extends Eff {
type R = R0; type Res = Res0
type Op[A] = CPS[A, Res ]
def unit : R ⇒ Res
}

Figure 1. Library interface of Effekt. Instances of Cap can only be created by the library. C is a monad with the corresponding
methods and properties.

2 Programming with Algebraic Effects and
Handlers in Effekt

To introduce our library “Effekt”, we elaborate on the intro-
ductory example and show the definition and usage of two
simple effects which are standard in literature: exceptions
and ambiguity. We choose to present all code examples in
Dotty, a variant of the Scala language, due to its support for
implicit function types and inferred eta-expansion. We use
this feature only for syntactic convenience, it does not affect
the operational semantics which is independent of the Dotty
implementation.

Regarding the concrete syntax, the Koka language [Leijen
2014, 2017b] served as a source of inspiration for our library
design. To allow easy comparison, the names of effects and
handlers in this example are close to Leijen’s [2017b].

2.1 Exceptions
Let’s consider the following program which makes use of a
simple exception effect:

def div (x : Int,y : Int) : Int using Exc =
if (y ≡ 0) raise ("y is zero") else pure (x / y)

An effectful program that uses effect E to compute a value
of type A has type A using E . Here, using is a binary type
alias written infix. It is defined in Figure 1 which shows the
complete public interface of Effekt. All effectful programs
use an underlying monad C (read “Control”), provided by
our library. Hence in the else-branch of the example the
result needs to be lifted into C using the function pure .

Algebraic effects encourage modularity by separating the
declaration of the effect signature from its semantics. Effect
signatures, such as Exc are declared as a trait inheriting
from Eff . Effect operations provided by the signature have
type Op[A] where A is the type of the value returned by
the effect operation.

trait Exc extends Eff {
def raise[A] (msg : String) : Op[A]
}

Readers familiar with shallow embedding [Carette et al.
2007; Hofer et al. 2008] or object algebras [Oliveira and Cook
2012] will recognize effect signatures as algebra signatures.

This is not a coincidence: We view handling an algebraic
effect as folding a handler over a tree of effect operations. The
domain of our interpretation is always C[Res ] for different
result types Res depending on the handler.

For convenient use, we also define a wrapper function for
every effect operation:
def raise[A] (msg : String) : A using Exc =

implicit e ⇒ use (e) (e.handler .raise (msg))

This allows the effect user to write raise ("...") as above.
Wewill omit thewrappers in the remainder since they always
follow the same shape and could be generated by a macro.
The effect signature Exc only specifies the effect opera-

tions. To give them a concrete interpretation we define a
handler for Exc by mixing in the library trait Handler and
providing implementations for the effect operations. In addi-
tion to the semantic interpretation of each effect operation,
we also implement the method unit which specifies how
pure terms that do not use the effect are lifted into the result
type. Here, we want to interpret exceptions by returning
Option[R] whenever the original computation returned R .
trait Maybe[R] extends Exc with Handler[R, Option[R]] {

def unit = r ⇒ Some (r )
def raise[A] (msg : String) = pure (None)
}

Similar to the wrapper functions for effect operations we
also wrap the constructor for the handler:
def Maybe[R] (f : R using Exc) : C[Option[R]] =

handle (new Maybe[R] { }) (f )

We can use the Maybe handler and run an example program
run {Maybe {div (4,0) } } to yield None.

2.2 Ambiguity
Our interpretation of the exception effect discards the con-
tinuation of the program when it encounters a raise and
immediately returns None. The implementation of handlers
for other effects requires access to the continuation in order
to call it once or even multiple times.
trait Amb extends Eff {

def flip () : Op[Boolean]
}

trait AmbList[R] extends Amb with Handler[R, List[R]] {
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def unit = r ⇒ List (r )
def flip () = for {xs ← resume (true); ys ← resume (false) }

yield xs ++ys
}

The above code shows the implementation of an ambiguity
effect with a coin flipping operation. To compute a list of all
possible outcomes, the handler AmbList calls the continua-
tion on true and on false and concatenates the results. We
also use implicit function types in the definition of the type
alias CPS[A,Res ] , which represents a cps transformed term
of type A with answer type Res . To allow concise handler
implementations, the continuation of type A⇒ C[Res ] is
marked as implicit. This way, it can implicitly be passed as
second argument k to the library function resume .
In the introductory example, we have seen how to use

both effect operations flip and raise in the same program,
combining Exc and Amb.

2.3 Implicit Function Types for Syntax
Implicit function types reduce the syntactic noise when pass-
ing down contextual information [Odersky et al. 2017]. Cur-
rently, Scala allows to mark arguments of lambdas as implicit
and thus make the argument implicitly available within the
body. However, this information cannot be expressed in the
type of the lambda, resulting in two problems: Firstly, it is
not possible to abstract over repeating patterns of implicit
arguments, as we do with the type alias using . Secondly
at the binding occurrence implicit arguments always need
to be named. To a large degree, the syntactic conciseness
of the above examples relies one the powerful combination
of implicit function types and inferred eta-expansion. For
example, driven by the type annotation, the Dotty compiler
automatically eta-expands the body of prog to:
implicit (e : Cap[Exc]) ⇒ implicit (a : Cap[Amb]) ⇒ ...

bringing the capabilities for two effects implicitly into scope
without having to explicitly bind them. With the capabilities
in scope, driven by their types, the compiler will then au-
tomatically provide the implicit arguments to calls of raise
and flip. Implicit function types are not essential for our
approach, since we could always pass down the capabilities
by hand. For instance, the example from the introduction
can be rewritten to not use implicits at all:
val prog2 : Cap[Amb]⇒ Cap[Exc]⇒ C[Boolean] =
amb ⇒ exc ⇒ if (x ⩽ 0) flip () (amb) else raise ("too big") (exc)

However, as becomes evident in the example, implicits and
implicit function types significantly improve the syntactic
convenience.

3 Extensibility Properties
Algebraic effects are well-known for their modularity bene-
fits when compared to other effect structuring techniques
such as monads and monad transformers. The effect signa-
ture serves as a stable interface between the effect user and
the effect implementor. Type class centric MTL style [Liang

et al. 1995] offers similar interfacing, but typically seman-
tics to effects in MTL are either provided monolithically or
via monad transformers that contradict modularity due to a
quadratic number of liftings which have to be written.
Effekt is based on a polymorphic (shallow) embedding

[Hofer et al. 2008; Hudak 1998] of effect handlers and thus,
like many other algebraic effect libraries, has a solution to
the expression problem [Wadler 1998] at its foundation. The
EP in context of algebraic effects can be summarized as mod-
ularly being able to a) add new operations to an existing
effect signature and b) implement new handlers for that ef-
fect signature. Effekt inherits the extensibility properties of
a polymorphic embedding. The analogy to the EP, however,
is not perfect as there are some notable differences: Firstly,
effect signatures are degenerate algebraic signatures since
the shape of recursion is very regular. In particular, Op never
occurs in a contravariant position. Secondly, most descrip-
tions of the EP only consider a single algebra, whereas with
algebraic effects we typically have more than one effect sig-
nature and the order of handling / folding over the operations
affects the semantics.

Additionally, by embedding algebraic effects into a general
purpose programming language like Scala, the modularity
features of the host language become available to structure
effectful programs. From an extensibility point-of-view, Ef-
fekt is thus located in the sweet spot of the force field opened
up by algebraic effects, the embedding in Scala as a host lan-
guage and polymorphic embedding as a solution to the EP.

3.1 Dimensions of Extensibility
The remainder of this section relates extensibility dimen-
sions discussed in literature on the expression problem to
the algebraic effects setting and shows how Effekt supports
them.

Adding new handlers for an effect. The first dimension of
the EP. A central feature of every implementation of effects
and handlers is the ability to define a new handler for an
existing effect. We support this feature: one can define a new
trait that implements an existing effect signature.

Adding new operations to an effect. The second dimen-
sion of the EP. It is important to distinguish adding an op-
eration to an existing effect and adding a new effect. Effekt
supports both in a modular way as required for solutions
to the EP. While section 2 already illustrated the latter, let’s
look at an example of the former by extending the effect
signature of Amb with a nondeterministic choice operator:
trait AmbChoose extends Amb {

def choose[A] (choices : List[A]) : Op[A]
}

We’d like to point out that this introduces a subtyping re-
lationship between Amb and AmbChoose – programs that
use the Amb effect can also be handled by a handler sup-
porting AmbChoose. If we want to implement a handler for
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AmbChoose we extend AmbList by mixing in AmbChoose
and implement the new operation choose .
trait AmbChooseList[R] extends AmbList[R] with AmbChoose {

def choose[A] (as : List[A]) : Op[A] = ...
}

For a detailed description of this extensibility dimension in
the context of the EP, we refer the interested reader to liter-
ature on object algebras [Oliveira and Cook 2012; Oliveira
et al. 2013].

Combining independently developed effect signatures
and handlers. The description of the EP has seen many
extensions and additional requirements. One additional re-
quirement described by Odersky and Zenger state that the
programmer should be able to combine independently de-
veloped extensions [2005]. This requirement might seem
unnecessary in the context of algebraic effects since instead
of combining two effect signatures a user can just use both
effects separately. However, this requirement becomes rele-
vant when considering the combination of effect handlers.
If we want to handle two effects by interpreting them into
the same domain it is in general not enough to run two
separately developed handlers in sequence.
trait ExcList[R] extends Exc with Handler[R, List[R]] {

def raise[A] (msg : String) = pure (List.empty)
}

trait ExcAmbList[R] extends ExcList[R] with AmbList[R]
val res3 : C[List[Boolean]] =

handle (new ExcAmbList[Boolean] { }) {prog }

Using ExcAmbList , we can handle both Exc and Amb si-
multaneously in one handler to yield res3 . This is different
from sequentially handling prog with AmbList and ExcList ,
which would result in a value of type List[List[Boolean]] .
The example illustrates that in Effekt handlers can be com-
bined with mixin composition under the condition that they
interpret the effects into the same domain. By capability sub-
typing, the combined handler can be used to handle either
one of both effects. It is passed down twice, once for each
effect it handles.

Handling effects locally. Being able to handle a subset of
the effects used by a program locally is one of the major
benefits of algebraic effects with handlers. We have already
seen some examples in section 2. One particularly interesting
feature is that handlers can again use a set of algebraic effects
in their implementation. In Effekt we can express such a
dependency on other effects as follows:
trait AmbFail[R] extends Amb with Handler[R, R] {

implicit val exc : Cap[Exc]
def flip () = raise ("too drunk to flip.")

def unit = identity
}

def AmbFail[R] (f : R using Amb) : R using Exc =
handle (new AmbFail[R] {val exc = implicitly }) (f )

val res4 : C[Option[Boolean]] = Maybe {AmbFail { prog } }

When compared to EP literature this forwarding to another
handler is remindful of family self references in [Oliveira
et al. 2013] and of base algebras in [Hofer et al. 2008].

4 Discussion
This section discusses relevant properties of Effekt’s design.

4.1 Design Decisions
In recent years an impressive amount of research has gone
into algebaric effects and handlers [Plotkin and Power 2003;
Plotkin and Pretnar 2009]. Programming languages centered
around algebraic effects and handlers such as Eff [Bauer and
Pretnar 2015], Koka [Leijen 2014] and Frank [Lindley et al.
2017] have been proposed and implemented.
Other research focused on embedding algebraic effects

and handlers into existing programming languages. One pop-
ular embedding technique is via variations of a free monad
[Kammar et al. 2013; Kiselyov and Ishii 2015; Kiselyov et al.
2013] over an open union of effect operations [Swierstra
2008].

Multi-prompt delimited continuations. Another, less
common, implementation strategy is via multi-prompt de-
limited continuations. Handling an effect introduces a new
prompt marker and this prompt marker is passed down to
the call of an effect operation which then captures the con-
tinuation up to the prompt. When the host programming
language allows for capturing the current context (via call/cc,
resumable exceptions, setjmp , etc.) a direct embedding of
algebraic effects and handlers is possible [Kammar et al. 2013;
Kiselyov and Sivaramakrishnan 2016; Leijen 2017a].

Monadic vs. direct style. Since the JVM and in consequence
Scala does not support sufficient stack inspection we base
our library on a monadic implementation of multi-prompt
delimited continuations [Dyvbig et al. 2007]. User programs
of our library have to be written in monadic style as can for
instance be seen in the handler implementation AmbList.flip
above. While for-comprehensions provide some relief, the
monadic style might still prevent a wider adoption.

This could be addressed by adding the necessary support
for multi-prompt delimited control operators [Kiselyov 2012]
to the JVM. We conjecture based on Leijen’s implementation
of algebraic effects in C [2017a], that it is possible to imple-
ment a direct style variant of Effekt in Scala native. A second
approach to support direct style would be to employ a type
directed CPS transformation [Rompf et al. 2009].

Shallow vs. deep embedding of handlers. Effect imple-
mentations based on a deep embedding of effect handlers
(this includes all free monad based implementations that we
are aware of) reify effectful programs as data. Handlers use
pattern matching to interpret the reified programs [Kiselyov
and Ishii 2015; Kiselyov and Sivaramakrishnan 2016]. A less
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common alternative is a shallow embedding of handlers2. In
a shallow embedding the semantics is passed down to the
part of the program that uses it. In that sense our embedding
of effects is shallow: we do not reify an effectful program as
a command-response tree, but pass the handler code down
to where it is used.

Capability passing. We need to pass down two things: the
prompt marker and the handler code. We call a pair of the
two a capability, which is the constructive proof that we in-
deed have the capability to perform the effect. This is in spirit
closer to Frank [Lindley et al. 2017] where we add abilities to
an ambient ability than to Koka [Leijen 2014] where we list
all effects used by a program but leave some effects open via
effect polymorphism. Effect systems based on capabilities
offer an alternative perspective on effect polymorphism [Liu
2016; Osvald et al. 2016]. Using implicit parameters for capa-
bility passing has been suggested a number of times [Haller
and Loiko 2016; Odersky et al. 2017; Osvald et al. 2016].

4.2 Safety
In Effekt a capability is only obtainable with a call to handle .
A call to use captures the current continuation up to the
prompt contained in the capability. For this operation to be
safe, it is important that use only occurs in the dynamic
scope of the corresponding call to handle . This means a
capability should not leak, e.g. via mutable state or capture
in a closure. When using such a leaked capability outside of
the dynamic scope of handle , the stack maintained by Effekt
will not contain the corresponding prompt marker anymore,
resulting in a runtime exception.
The version of Effekt as presented in this paper does not

address this threat to safety and relies on disciplined use of
the library. To guarantee safety and assert that all effects are
handled, other implementations of algebraic effects (like the
Scala library Eff) use open typelevel unions. This technique
could also be applied in our case. However, since we already
pass down capabilities, we believe that our library design
is well suited to be combined with approaches for second
class capabilities [Osvald et al. 2016]. With Dotty’s implicit
function types and scala-escape’s @local annotation we
could change the type alias using to be

type using[A,E ] = implicit @local Cap[E ]⇒ C[A]

expressing that the capability Cap[E ] should not be closed
over. We combined a Scala version of our library with “scala-
escape” 3 which gave first promising results. We hope that
our combined use case of implicit function types and @local
to implement safe algebraic effects can guide future research
of the Scala language.

2 The concept of shallow embeddings [Hudak 1998] has seen many exten-
sions and variations in literature, such as polymorphic embedding [Hofer
et al. 2008], finally tagless interpreters [Carette et al. 2007] and object alge-
bras [Oliveira and Cook 2012].
3https://github.com/TiarkRompf/scala-escape

Another source of runtime exceptions is a call to run
before all effects are handled. This is a standard problem
[Dyvbig et al. 2007] and can be addressed by adding enough
polymorphism. The signature of run could be changed to be

def run[A] (f : {def apply (e : Effekt) : e.C[A] }) : A

Since the type C is path dependent, capabilities obtained by
one instance of Effekt cannot be used in another instance.
Since run is not part of the interface of Effekt we can be
sure that all effects are handled.

4.3 Performance
To evaluate performance, we implemented three different
functions count , count8 and nqueens in Effekt and in the
established Scala library “Eff”. count only counts down using
a simple state effect, count8 does the same but additionally
layers eight levels of state effects over a single flip . nqueens
is an effect library benchmark from the literature [Kammar
et al. 2013]. Running the benchmarks on a 2.5 GHz Intel Core
i7 with 16GB of memory results in speed ups of 5.7 − 6.5x,
17.3− 18.9x and 1.6− 3.0x, correspondingly. We account the
speedup to our use of a shallow embedding, which prevents
a heap allocated representation of the effect tree. Also the
construction and deconstruction of the effect tree (in terms
of pattern matching) is not necessary anymore, potentially
allowing for more JIT optimization.

Conclusion
In this paper, we presented Effekt, a library design for al-
gebraic effects and handlers in Dotty. We described novel
extensibility scenarios, which are supported by using a poly-
morphic embedding of handlers. Building our library around
capability passing reduces the need for advanced typelevel
programming, such as open typelevel unions.
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