
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Parsing with First-Class Derivatives

Jonathan Immanuel Brachthäuser Tillmann Rendel Klaus Ostermann
University of Tübingen, Germany

{brachthaeuser, rendel, ostermann}@informatik.uni-tuebingen.de

Abstract
Brzozowski derivatives, well known in the context of reg-
ular expressions, have recently been rediscovered to give a
simplified explanation to parsers of context-free languages.
We add derivatives as a novel first-class feature to a standard
parser combinator language. First-class derivatives enable an
inversion of the control flow, allowing to implement modular
parsers for languages that previously required separate pre-
processing steps or cross-cutting modifications of the parsers.
We show that our framework offers new opportunities for
reuse and supports a modular definition of interesting use
cases of layout-sensitive parsing.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Syntax; D.3.4
[Programming Languages]: Processors—Parsing; F.4.2
[Mathematical Logic and Formal Languages]: Grammars
and Other Rewriting Systems—Parsing; F.4.3 [Mathemat-
ical Logic and Formal Languages]: Formal Languages—
Operations on languages

General Terms Algorithms, Languages

Keywords Parsing; Modularity; Derivative; Left Quotient;
Parser Combinators

1. Introduction
The theory and practice of context-free grammars is well-
developed, and they form the foundation for most approaches
to parsing of computer languages. Unfortunately, some syn-
tactic features of practical interest are inherently not context-
free. Examples include indentation-sensitivity as can be found
in Haskell or Python or two-dimensional grid tables as in
some Markdown dialects. To parse languages with such in-
herently non-context-free features, language implementors
have to resort to ad-hoc additions to their parsing approach,

often reducing the modularity of their parser because these ad-
hoc additions are cross-cutting with respect to the otherwise
context-free syntactic structure of the language.

Parser combinators [10, 10, 15, 21, 22] are a parsing
approach that is well-suited for such ad-hoc additions. With
parser combinators, a parser is described as a first-class
entity in some host language, and parsers for smaller subsets
of a language are combined into parsers of larger subsets
using built-in or user-defined combinators such as sequence,
alternative, or iteration. The fact that parsers are first-class
entities at runtime allows an elegant way of structuring
parsers, simply by reusing the modularization features and
abstraction mechanisms of the host-language. Despite this
potential, the reuse of carefully crafted parsers is often
limited: Necessary extension points in terms of nonterminals
or exported functions might be missing. At the same time,
cross-cutting syntactical features like two-dimensional layout
can often not be separated into reusable modules.

We propose to increase the modularity of parser combi-
nators by adding a combinator to compute a parser’s Brzo-
zowski derivative. Derivatives, well known in the context of
regular expressions, have recently been rediscovered to give
a simple explanation to parsers of context-free languages
[1, 6, 17, 18]. A parser p derived by a token c is again a
parser p′ characterized by L(p′) = {w | cw ∈ L(p)}. For
example, deriving the parser p = "while" by the token ’w’

thus yields a parser recognizing the word "hile". Deriving p
by any other token yields the empty parser. So far, to the best
of our knowledge, Brzozowski derivatives have only been
used to describe the semantics of grammars or to implement
parsers, but not to extend the language of grammars itself.
Similar to prior work we base the definition of our parsers on
derivatives. In addition, we introduce first-class derivatives
as parser combinators by exposing the derivation operator to
the user. First-class derivatives effectively allow user-defined
combinators to filter or reorder the token stream, which turns
out to increase the modularity of parsers written with the
library.

Overall, we make the following contributions:

• We identify the substream property, shared by many
traditional parser combinator libraries, as the main hurdle
precluding modular support for many inherently non-
context-free syntactic features (Section 2).

• We present the interface of a parser combinator library
with support for first-class derivatives and show how it
can be used to modularly define a combinator for a simple
variant of indentation sensitivity (Section 3).
• To evaluate expressivity, we have performed three ad-

ditional case studies (beyond the indentation example).
Section 4 reports on our experience with skipping a pre-
fix of a parser to increase reuse opportunities, parsing a
document with two interwoven syntactic structures, and
parsing two-dimensional grid tables modularly.
• To evaluate how our approach scales to realistic languages,

Section 5 and Section 6 extend the indentation example to
support more features of a language modeled after Python
and illustrate how to overcome some limitations.
• To evaluate feasibility and support our case studies, we

have implemented a prototype of a parser combinator
library with support for first-class derivatives. In Section 7,
we explain how we first based the implementation of
the usual combinators on derivatives and then exposed
derivatives also to the user as a combinator.

We review closely related work in Section 8. In Section 9,
we discuss limitations, future work, and phrase open ques-
tions. Section 10 concludes the paper.

The implementation of our library and all of the parser
combinators presented in this paper is available online1.

2. Parser Combinator Libraries
and the Substream Property

We base our studies on parser combinators, since they already
offer a wide range of techniques to modularly define parsers
which we account to their nature of being an embedded
domain-specific language (EDSL) [8]: Both type- and term-
level abstraction mechanisms can be reused to implement
modular, reusable parsers. Parser developers can use host-
language functions to express parsers which are parametrized
by values of the host language. In particular, parsers can also
be parametrized by other parsers. In this case, we call the
parametrized parser a higher-order parser, or a combinator.
We sometimes refer to the parsers which are passed as
argument to the combinator as “child parser”.

Despite their already good support for modular definitions,
“traditional” parser combinator libraries, that is, libraries
that do not support first-class derivatives, share a set of
shortcommings that we will discuss in the remainder of
this section. Later sections will illustrate how first-class
derivatives can help to overcome these limitations.

To recognize a given input stream with a composite parser,
every single child parser might only handle a small fraction of
the input stream handled by the composite. Typically, a parser
cannot distinguish whether the input stream it processes is
the original input stream or only a segment of it. To highlight

1 https://github.com/b-studios/fcd

this, we call the input stream as seen from the point of view
of one particular parser object a virtual input stream. By
analyzing which parts of the stream are processed by a parser,
we observe the following substream property.

A parser’s virtual input stream corresponds to a con-
tinuous substream of the original input stream.

The sequence of tokens that is processed by a parser as its
virtual input stream appears as an exact substream in the
original input stream.

Parsers in traditional parser combinator libraries have
the substream-property. The property makes sense from a
language-generation perspective: The language of a nonter-
minal in a context-free grammar is always compositional in
the languages of the grammar symbols appearing in its pro-
ductions. One reason is that in context-free grammars there is
neither a way to remove symbols from the words produced by
a nonterminal, nor it is possible to add symbols in the middle
of a word. The only way to create words from smaller words
is by concatenation – in turn, every word in the language can
be split into continuous (potentially nested) regions that have
been generated by the corresponding nonterminals.

From a recognition perspective, however, the property
impose several restrictions. In particular, the following opera-
tions on streams are usually not supported by parser combi-
nator libraries:

Removing from the stream. To implement a simple form
of indentation sensitivity, for each block, one might want
to strip the indentation and only pass the indented block to
the child parser. However, this block is not represented by
a continuous segment of the original input stream because
each line starts by the indentation whitespace that should be
stripped out. We want to explicitly select which parts of the
original input stream should form the virtual input stream of
the child parser, potentially leaving out tokens.

Extracting interleaved segments of a stream. When pars-
ing a document that contains textual and source code frag-
ments, one might want to interleave the parsing of the two
content types to parse them in a single pass. This requires that
parsing of one content type can be suspended to be resumed
after parsing a fragment of the other content type. Again,
the full source code and the full text do not form continuous
substream of the original input stream.

Adding to the stream. ASCII-Tables are tables represented
in monospaced text which typically use dashes, pipes, and
other characters to define the two-dimensional layout and
separate their cells. Again, it is difficult to implement a parser
combinator that parses such a table in one pass, using one
child parser for each cell, since the contents of the cells do
not form continuous segments in the original input stream. In
particular, the virtual input stream of each cell-parser should
contain newlines instead of the column separating characters.
Such newlines are not part of the original input stream.

https://github.com/b-studios/fcd

Some of this limitations are addressed by separate stream-
preprocessing solutions. For instance, the lexer of the
indentation-sensitive language Python inserts special INDENT
and DEDENT tokens into the token stream to communicate the
layout structure to the parser. However, solutions like this
hardly can be reused and in consequence, the preprocessing
often has to be designed in concert with the particular parser.
The communication between lexer and parser is typically
one-directional, leading to more complicated lexers. They are
even less compositional: It would be desirable to combine
the three features mentioned above to write a parser for a
complex mixed document with indentation sensitive source
code and ASCII tables in the text sections without having to
carefully redesign the preprocessing stage.

In the next section, we will introduce our parser com-
binator library which allows fine-grained control over the
input stream delegation to child parsers. By fusing stream-
preprocessing and parsing, with our library, we can imple-
ment each of the above examples as a parser combinator in
a separate module and combine them to obtain a parser for
the above mentioned complex mixed document. As a conse-
quence of interleaving the preprocessing phase with parsing,
more communication between the phases is possible and thus
the preprocessing can now happen dependent on the pars-
ing. Being able to implement the preprocessing as a parser
combinator also implies compositionality. In particular, the
combinators can be applied recursively to allow for instance
nested tables that itself contain tables and indented code.

3. First-Class Derivatives: Gaining Fine-
Grained Control over the Input Stream.

Derivatives are a well-studied technique to construct automata
for the recognition of regular [5, 20] as well as context-free
languages [6, 17, 23]. By introducing first-class derivatives
as novel combinator, we internalize the semantic concept of
a derivative and make it available to the parser implementor.

We use the programming language Scala for the presenta-
tion of our combinator library and the examples in this and
following sections, but our approach is generally applicable
to derivative-based parsing and is not restricted to Scala. Our
presentation follows the syntax of traditional parser combina-
tors as found in the Scala standard library.

In this section, we hide implementation details and define
a parser in our library by the abstract type2:

type P[+R]

The concrete type together with the implementation of all
combinators will be given in Section 7.

In addition a parser is characterized by the function

def parse[R](p : P[R], input : List[Elem]) : Res[R]

that can be used to process input (earlier alluded to as
“original input stream”) into a resulting syntax tree. The

2 The symbol + is Scala syntax to mark type parameter R as covariant.

// primitive parsers
def succeed[R] : R ⇒ P[R]

def acceptIf : (Elem⇒ Boolean) ⇒ P[Elem]

def fail[R] : P[R]

// traditional parser combinators
def seq[R,S] : (P[R],P[S]) ⇒ P[(R,S)]

def alt[R] : (P[R],P[R]) ⇒ P[R]

def map[R,S] : P[R]⇒ (R ⇒ S) ⇒ P[S]

def flatMap[R,S] : P[R]⇒ (R ⇒ P[S])⇒ P[S]

def and[R,S] : (P[R],P[S]) ⇒ P[(R,S)]

def not[R] : P[R] ⇒ P[Unit]

// non-traditional parser combinators
def feed[R] : (P[R],Elem) ⇒ P[R]

def done[R] : P[R] ⇒ P[R]

def nt[R] : (⇒ P[R]) ⇒ P[R]

(a) Syntax of the parser combinator library.

c1 accept(c2 ⇒ c1 ≡ c2)

p � c feed(p, c)

p ∼ q seq(p, q)

p & q and(p, q)

p >> f flatMap(p)(f)

p ˆ̂ f map(p)(f)

p | q alt(p, q)

(b) Syntactic abbreviations with operator precedence from high to low.

def any : P[Elem] =

acceptIf (c ⇒ true)

def no : Elem⇒ P[Elem] =

c1 ⇒ acceptIf (c2 ⇒ c1 6= c2)

def many[R] : P[R]⇒ P[List[R]] =

p ⇒ some(p) | succeed(Nil)

def some[R] : P[R]⇒ P[List[R]] =

p ⇒ p ∼ many(p) ˆ̂ {case (r , rs)⇒ r :: rs }
(c) Traditional derived parser combinators.

Figure 1. Syntax of our parser combinator library.

function parse is universally quantified by R and so given
a parser of type P [R] it will process the list of tokens to
potentially return syntax trees of type R. If the input cannot
be recognized the returned list will be empty.

For ease of presentation, unless noted otherwise we fix
the type of elements of the input stream (Elem) to character
literals and the type of the parser results (Res) to a list (to
allow for ambiguous parses).

3.1 Traditional Parser Combinators
The syntax of our parser combinator library is summarized
in Figure 1a. Calling the function succeed(r) gives a parser
that only accepts the empty string and returns r as resulting
syntax tree. The parser created by acceptIf (pred) recognizes
only a single character, filtered by the predicate pred . The
parser fail never accepts any input.

We also include the traditional parser combinators seq, alt,
and map. The parser seq(p, q) recognizes an input if it can
be split into two subsequent substreams where p recognizes
the first and q recognizes the second substream. It returns
the cartesian product of their results. The parser alt(p, q) is
used to represent an alternative in a production. The parser
map(p)(f) allows applying the transformation function f as
a semantic action to the syntax tree returned by p3.

In addition to these combinators, that alone can be used
to represent context-free grammars, we also include the
monadic combinator flatMap, the intersection of two parsers
and as well as negation of a parser not. The combinator
flatMap (p) (f) allows one to dynamically create parsers,
based on the results of parser p. Using flatMap it is, for
instance, possible to parse a number n and then based on that
number create a parser for the remainder of the input stream
that recognizes n-many tokens. The intersection and(p, q) of
the two parsers p and q recognizes a word only if both parsers
recognize it. The negation of a parser not(p) recognizes the
complement of the language of parser p. Both, intersection
and negation are rarely found in combinator libraries. This
probably relates to the fact that the language of the resulting
parsers is in general not context-free. However, as we will
see in Section 7 supporting intersection and negation in a
derivative-based implementation is straightforward. Later
examples show that both combinators are useful in our
framework.

3.2 First-Class Derivatives
Having seen the traditional parser combinators, we now can
take on the three non-standard combinators feed, done and
nt that require some explanation.

The combinator feed(p, c) represents the core contribution
of this paper. It derives the parser p by the given token c.
Derivatives, well known in the context of regular expressions
[5], have recently been rediscovered to give a simplified
explanation to parsers of context-free languages [1, 6, 17, 18].
Roughly, a parser p derived by a token c is again a parser p′

and the language L(p′) of the parser is given by

L(p′) = {w | cw ∈ L(p)}

That is, if the parser p recognizes words that start with the
token c, then its c-derivative will recognize all suffixes of
these words. In addition, we require that the resulting syntax
trees produced by parser p′ after reading the remaining word
w will be the same as the ones produced by p after reading cw .
Derivatives immediately give rise to language recognition.
A parser accepts a word w , if and only if, after repeated
derivation with all tokens in w , the parser accepts the empty
word. That is, calling results yields a non-empty list of syntax
trees.

3 The arguments to the parser combinators map and flatMap are curried,
since Scala offers better type inference on curried functions.

Example. Deriving the parser p that only recognizes the
word “for” by the token “f” yields a parser recognizing the
word “or”. Deriving p by any other token yields the empty
parser. After also deriving the resulting parser by “o” and
“r” it will accept the empty word, returns the corresponding
syntax tree as the result, and thus recognizes the word “for”.

Our new combinator feed now internalizes this semantic
concept and offers the derivative of a parser as first-class
feature to the parser implementor. For the above example, we
write feed(p, ’f’) or p � ’f’ to refer to the “f”-derivative
of the parser p.

As we will see later, in the presence of feed it can be useful
to terminate a parser and prevent that parser from accepting
any further input. To this end, the combinator done(p) will
return the very same syntax tree, that the parser p would
return. However, done (p) does not accept any input and
hence can be seen as terminating the parse of p. Thus, for
every parser p and every token c, feed(done(p), c) is equal
to fail.

The combinator nt(p) is a technical necessity. Laziness is
required to allow implementing parsers for grammars with
left-, right- and mixed-recursion. To this end, we introduce
the combinator nt(p) that is lazy in its argument p4. That is,
p is only evaluated if used inside the implementation of nt
but not during construction of the parser. This way, recursive
grammars can be represented as cycles in memory. We apply
the following convention for the use of this combinator:
All parsers that represent nonterminals should wrap their
implementation in a call to the nt combinator.

Example. Using this convention, we can implement a
parser that recognizes numbers as sequences of the digits,
using the parser digit : P[Int]:

val number : P[Int] =

nt (map(seq(number, digit)) {
case (n, d)⇒ (n ∗ 10) + d

}
| digit

)

Here, we define the parser number as a constant using val.
Since the occurrence of number in the second alternative
is guarded by the laziness of nt the parser is well-defined.
The second argument to map is provided as an anonymous
function that pattern matches on its arguments to bind the
results of the parser number to n and the results of digit to d .

For notational convenience, we use the syntactic abbrevia-
tions as summarized by Figure 1b. In addition, we implicitly
lift string literals to a parser of character sequences. We also
omit explicit calls to nt, as this is only a technicality, neces-
sary to assert termination of the parser construction. Since
discarding of results occurs frequently, we define directed
parser combinators for sequence (p ∼ q and p ∼ q) and

4 In Scala, arguments of functions can be marked as by-name by prefixing
their type with⇒. Laziness then can be encoded by caching the result of
forcing the argument.

x = 0

while x < 10:

y = 0

while y < 10:

print(x * y)

y += 1

x += 1

in
d

en
te

d
(s

tm
ts
)

stmt

st
m

t

stmts

(a) Original input stream, as recognized by parser stmts.

y = 0

while y < 10:

print(x * y)

y += 1

x += 1



in
d

en
te

d
(s

tm
ts
)

stmt st
m

t

stmt

stmts

(b) Virtual input stream after delegation by indented.

print(x * y)

y += 1

stmt

stmt

(c) Virtual input stream after two layers
of delegation.

Figure 2. Python code as an example how the input stream can be recognized by a parser stmts. Only the boxed content is
passed to the nested instances of the parser stmts, indenting whitespaces are stripped before by the combinator indented.

intersection (p & q and p & q). They recognize the same
language as their undirected counterpart, but only return the
results of the parser the arrow points to. Using these abbrevi-
ations, we can define the parser number again by:

val number : P[Int] =

(number ∼ digit ˆ̂ {case (n, d)⇒ (n ∗ 10) + d }
| digit

)

In the remainder of this section, we will use our new
combinator feed to implement a modular parser combinator
for a simple form of indentation sensitivity. In this process,
we will see how feed is key to overcome the limitations as
imposed by the substream property. Later, Section 5 and
Section 6 will further improve the indentation combinator.

3.3 Indentation-Sensitive Parsing
Using indentation to indicate block structure goes back to
Landin’s “offside rule” [14], which, in variations, is still used
by languages like Haskell and Python. How can indentation
sensitivity be implemented with parser combinators?

Ideally, we would like to enable users to define indentation
as a combinator indented (p) that transparently handles
indentation, while the body-parser p, in contrast, is fully
agnostic of the indentation. Defining and maintaining the
combinator in a separate module could foster reuse and
robustness of the implementation.

Figure 3 outlines how such a combinator could be used
by giving a simplified skeleton-grammar for the program-
ming language Python. For brevity, only the case for while-
statements is given and the productions for parsing expres-
sions (expr) are omitted. The parser stmts uses some, as
defined in Figure 1c to recognize multiple statements, which
are terminated by newlines. It is unaware of indentation. In
contrast, block first reads an initial newline and then makes
use of the indented combinator to accept multiple statements
which we for now assume to be indented by two spaces.

To understand how an implementation of indentation using
first-class derivatives can be structured, let us consider the
example of an indentation-sensitive program in Figure 2a.

val stmt : P[Stmt] =

(("while" ∼ expr ∼ ’:’) ∼ block ˆ̂ {
case(e, b)⇒ new WhileStmt(e, b)

}
| ...
)

val expr : P[Stmt] = ...

val stmts : P[List[Stmt]] = some(stmt ∼ ’\n’)

val block : P[Stmt] =

’\n’ ∼ indented(stmts) ˆ̂ {ss ⇒ new BlockStmt(ss)}

Figure 3. A skeleton of a simplified python parser

On the top level, the program consists of two state-
ments, an assignment, and a while-statement. Interestingly,
in order to recognize the body of the while-statement,
indented(stmts) needs to perform two separate tasks. First,
it needs to assert that all lines that belong to the block are
indented by two spaces. Second, it needs to invoke the body-
parser stmts with the contents of the indented block (high-
lighted in gray). The contents should however not include
the two whitespaces at the start of each line. We observe,
that what can visually be recognized as one block structure
actually consists of five different regions in the original input
stream, represented by each line in the highlighted block.
In particular, those regions are not a continuous substream.
In the original input stream, they are separated by the two
whitespaces which should be skipped.

The virtual stream which is to be recognized by the
indentation agnostic body-parser stmts is shown in Figure 2b.
We can see that the virtual stream consists of three statements,
where the second one is again a while-statement extracting
two chunks of its virtual stream, “print(x * y) ” and
“y += 1 ”, which form a continuous substream of neither
the current virtual stream nor the original stream.

Finally, these two chunks represent the virtual stream
(Figure 2c) for the last invocation of the stmts parser that
recognizes the two statements in a straightforward manner.

def indented[T](p : P[T]) : P[T] =

done(p) | (space ∼ space) ∼ readLine(p)

def readLine[T](p : P[T]) : P[T] =

(no(’\n’) >> {c ⇒ readLine(p � c)}
| ’\n’ >> {c ⇒ indented(p � c)}
)

(a) Definition of the combinator indented(p) in terms of�.

indentedstart readLine not

(b) Automaton modeling the control flow of the parsers in Figure 4a;
transitions with solid lines delegate the input to the underlying body parser.

Figure 4. Implementing the combinator indented (p) in
terms of first-class derivatives.

3.4 Implementation using First-Class Derivatives
Utilizing our new combinator feed, Figure 4a shows the im-
plementation of the parser combinator indented. Indentation
is implemented by two mutually recursive parser combina-
tors indented and readLine. Each of the two functions corre-
sponds to one state in an automaton as illustrated in Figure 4b.
The combinator indented (p) assures that each line subse-
quently processed by p is indented by two spaces, without
delegating the spaces to p. If the body parser p is “done”,
that is, it accepts the empty string and can return a result-
ing abstract syntax tree, then also the indented parser can
accept the empty string. Otherwise, after reading two spaces
readLine(p) is called, which delegates all tokens to p until it
encounters a newline. In that case, it hands control back to
indented. To this end, flatMap is used to capture the token
and delegate it to the underlying parser p using the feed com-
binator. This is a reoccurring pattern when writing parsers
with first-class derivatives, captured by following pseudo-
code:

any >> {c ⇒ ...p � c...}

Here, a single character is consumed, just to be bound to c
awaiting optional delegation to p.

In the implementation in Figure 4a, similar to an environ-
ment-passing style, the body-parser p is explicitly threaded
through the calls to indented and readLine, sometimes being
fed with tokens. As we shall see shortly, in some cases we
can abstract this threading of the child parser. We also refer
to this child parser as the delegatee.

During the process of parsing with the indentation com-
binator, tokens are fed to p immediately, once they are avail-
able. In particular, in this example p receives every token in

the virtual input stream relative to the enclosing combinator
indented exactly once.

As becomes visible, the combinator indented can be
developed in a separate module, independently of the parser
of the concrete language. It models indentation just in terms
of spaces and newlines. Section 6 discusses modularity issues
that arise from interpretation of spaces and newlines that
depend on the lexical or syntactical context.

3.5 Derived Combinators
The mapping between the automaton in Figure 4b and the
mutually recursive functions in Figure 4a is straightforward.
However, explicitly threading p through the involved combi-
nators is repetitive and error-prone. To simplify the definition
of parser combinators like indented, we introduce the derived
combinators delegate and repeat in Figure 5a.

Delegation refers to the process of forwarding the input
stream to some other parser but not giving up control. The
delegation can be suspended and the partially applied parser
can be extracted to eventually resume delegation later. The
combinator delegate(p) reflects on the process of delegation
to p. It yields a parser that represents the delegation process
by always delegating all input it receives to p. There are two
interesting ways to interact with such a delegating parser.
Firstly, we can extract the delegatee at the current state and
construct a new parser using it. This is achieved by using
flatMap to access the results of delegate. Secondly, we can
specify the end of delegation process to a particular region of
the input stream. This is achieved using intersection. We use
the pattern p & delegate(q) to express delimited delegation.
Here, we refer to the parser p as delimiter. The full virtual
input stream of such a delimited delegation is fed to the
delegatee q . However, intersection with p restricts which
words should be accepted, effectively delimiting the region
of the delegated input stream.
In concert with flatMap we can implement the following
parser that accepts any two tokens, delegates them to some
parser p to then construct a parser that accepts a token ’a’

before continuing with the delegatee:

((any ∼ any) & delegate(p))>> {p2 ⇒ ’a’ ∼ p2}

Using delimited delegation, the delegation does not need to be
performed on a token-by-token basis as in Figure 4a. Instead,
the region that should be delegated can be expressed in terms
of the delimiter.

Iteration refers to repeatedly delegating fragments of the
input stream to a parser and is implemented by the second
derived combinator repeat(f)(p). The surrounding “context”
of the delegated fragment is expressed using the function
f which eventually constructs a (delimited) delegation. The
combinator then takes a parser p as initial delegatee and
threads p through repeated applications of f . At every level
of recursion, repeat is successful if and only if p is successful.

def delegate[R](p : P[R]) : P[P[R]] =

succeed(p) | any >> {c ⇒ delegate(p � c)}

def repeat[R](f : P[R]⇒ P[P[R]]) : P[R]⇒ P[R] = p ⇒
done(p) | f (p) >> repeat(f)

(a) Derived combinators to abstract over input-stream delegation and thread-
ing of parsers.

val line = many(no(’\n’)) ∼ ’\n’

def indented[T] : P[T]⇒ P[T] = repeat[T] {p ⇒
(space ∼ space) ∼ (line & delegate(p))

}
(b) Definition of the combinator indented(p) in terms of delegate.

Figure 5. Using the derived combinator delegate to encap-
sulate delegation.

Using these two derived combinators, we can give an
equivalent but more concise definition of the indentation
parser (Figure 5b). After skipping two spaces, delimited
delegation is used to feed tokens to p until a newline is
encountered; the resulting parser (extracted by flatMap in
the implementation of repeat) is then used to iterate and
process the next line.

This example illustrates how the novel combinator p � a
allows an inversion of the control flow and explicit handling
of the input stream. This paves the way for further interesting
use cases, which we present in the next section.

4. Applications
We practically evaluate our approach by giving more ex-
amples that illustrate the gained expressive power. As we
shall see, the expressive power reveals itself with respect to
two aspects: The definition of new modular combinators that
unify stream processing and parsing; and the reuse of existing
parser definitions that lacked appropriate extension points.

4.1 Increased Reuse through Parser Selection
Even when designed with great care, a parser implementa-
tion for a certain language will always only export a limited
set of extension points which facilitate the reuse and later
extension of parsers. For instance, consider the parser for
while-statements in Figure 3. In a traditional setting, imple-
menting a parser for an until-statement would repeat most
of the implementation of the while statement without any
possibility of reuse.

In our framework, we can use the combinator feed to navi-
gate into a grammar and select a “sublanguage”. Since deriva-
tives are defined for languages, we can perform this action
even without knowing the actual parser implementation. We
can thus select the parser for the body of the while-statement
by stmt <<< "while". The operator <<< is defined by lifting
� from one token to a sequence of tokens (or strings). Omit-

ting the handling of the resulting syntax tree, the parser for
until-statements can now be implemented by:

val untilStmt = "until" ∼ (stmt <<< "while")

We can also again view this from a language generation
perspective: Alternative productions just grow the language
and the sequence of parsers (concatenation) adds to the words
in the language. These are the operations traditional parser
combinator libraries offer to reuse existing parsers.

This stands in contrast with intersection, which is “dual”
to alternative and quotienting (deriving) which is “dual” to
concatenation. Offering these operations in a parser combina-
tor library allows new ways to reuse existing parsers which
we call restriction and selection.

As another example, intersection could be used to restrict
the expr parser to productions that start with a number while
feed can be used to select a parser for the fractional digits
deriving expr by “0.”.

4.2 Modular Definitions as Combinators
The introductory example of indentation-sensitivity showed
that first-class derivatives also are useful to gain fine-grained
control over a child parser’s virtual input stream. Building
on this functionality, in the remainder of this section, we
develop additional combinators with increasing complexity:
From simple stream processing to a combinator for one-pass
parsing of two-dimensional ASCII-tables.

Stream preprocessing. One example for a simple form
of stream-preprocessing is the escaping and unescaping of
special tokens or sequences of tokens in the input stream. Just
using feed, done and parametrized parsers we can implement
unescaping of newline symbols as a combinator unescape:

def unescape[R](p : P[R]) : P[R] =

(’\\’ ∼ any >> {c ⇒ unescape(p � unescChar(c))}
| no(’\\’) >> {c ⇒ unescape(p)}
)

The function unescChar maps characters like ’n’ to their
unescaped counterpart ’\n’. Since unescaping is defined as a
parser combinator and not a separate preprocessing phase, it
can selectively be applied to other parsers and thus its scope is
limited to the virtual input stream of that parser. For instance,
one could use unescape on a parser for regular expressions to
reuse the parser inside string literals, where special characters
need to be escaped.

Mixed content: Delegating to two parsers. Our implemen-
tations of combinators for indentation sensitivity and simple
stream pre-processing are examples of parser combinators
that delegate the input stream to a single child parser. How-
ever, it is straightforward to generalize the notion of delega-
tion to multiple parsers. As an example for delegation to two
parsers let us consider a document with two interleaved con-
tent fragments: one for source code of a particular language;

def inCode[R,S](text : P[R], code : P[S]) : P[(R,S)] =

("~~~" ∼ inText(text , code)

| any >> {c ⇒ inCode(text , code � c)}
)

def inText[R,S](text : P[R], code : P[S]) : P[(R,S)] =

(done(text & code)

| "~~~" ∼ inCode(text , code)

| any >> {c ⇒ inText(text � c, code)}
)

(a) Combinators for interleaved parsing of fenced code blocks.

def distr[T](ps : List[P[T]]) : P[List[T]] =

ps.foldRight(succeed(Nil)) {case (p, ps2)⇒
(p ∼ ps2) ˆ̂ {case (r , rs)⇒ r :: rs }
}

def collect[T](ps : List[P[T]]) : P[List[T]] =

ps.foldRight(succeed(Nil)) {case (p, ps2)⇒
done(p) >> {r ⇒ ps2 ˆ̂ (rs ⇒ r :: rs)}
}

(b) Derived parser combinators for handling lists of parsers.

type Layout = List[Int]

def table[T](cell : P[T]) : P[List[List[T]]] =

(head ∼ ’\n’) >> { layout ⇒ body(layout , cell)}
def head : P[Layout] = some(’+’ ∼ manyCount(’-’)) ∼ ’+’

def body[T](layout : Layout, cell : P[T]) : P[List[List[T]]] =

many(rowLine(layout , layout .map(n ⇒ cell)) ∼ rowSep(layout))

def rowSep(layout : Layout) : P[Any] =

layout .map {n ⇒ ("-" ∗ n) + "+"}.foldLeft("+")(+) ∼ ’\n’

def rowLine[T](layout : Layout, cells : List[P[T]]) : P[List[T]] =

((’|’ ∼ distr(delCells(layout , cells)) ∼ ’\n’) >> {
cs ⇒ rowLine(layout , cs)

}
| collect(cells)

)

def delCells[T](layout : Layout, cells : List[P[T]]) : List[P[P[T]]] =

layout .zip(cells).map {
case(n, p)⇒ delegateN(n, p).map(p ⇒ p � ’\n’) ∼ ’|’

}
(c) Modular definition of a parser combinator for ASCII-tables.

Figure 6. Parser combinators for additional case studies illustrating delegation to more than one parser.

and one for textual contents. Similar to fenced code blocks
in markdown, the code fragments are explicitly delimited by
“~~~”. Virtually, we want to split the document into one code
fragment and into one text fragment. However, we want to
parse the document in one pass, using a separate parser for
the code fragments and another one for the textual contents.
Figure 6a gives the definition of two mutually recursive parser
combinators inCode and inText, that given the two content
parsers, implement parsing of the mixed document by inter-
leaved delegation. To enable switching between delegating
to text and to code the two parsers are passed to all subse-
quent calls of inCode and inText. In effect, the virtual input
stream of the code parser is given by all contents inside the
fenced code blocks and the virtual input stream consists of
all contents outside the fenced code blocks.

ASCII tables: Delegating to a list of parsers. Our ap-
proach is not limited to delegate to two (or a statically known
amount of) parsers. It is possible to delegate to a list of parsers,
where the size of the list dynamically depends on previously
processed input. This is for instance the case when parsing
an ASCII table, such as:

+------+--------------+------+

|x += 1|while x < 1: |y += 1|

| | print(x * y)| |

+------+--------------+------+

Here, we do not know in advance how many parsers we
will need for the cells of one row. However, after processing
the first line we know the vertical layout in terms of column
size (in our case List(6, 14, 6)). Depending on the layout, to

parse one row of the table, we now can initialize one parser
per table cell. Since the contents of the cell do not satisfy the
substream property, we need to interleave the delegation of
all involved cell-parsers. To process the second line of the
input, we parse the initial pipe and delegate six tokens to the
first cell parser. Interestingly, on the encounter of the second
pipe in that line, we feed a newline to the first parser before
we suspend it and continue delegating to the remaining two
parsers. To process the third line, we resume delegation to
the corresponding cell parsers of the previous line. Finally,
we process the terminating row-separator.

Similar to this informal description, the combinator
table (cell) parses a two-dimensional table, given an ini-
tial parser for cells (Figure 6c). To handle administrative
details of delegating to a list of parsers it uses two new
derived combinators defined in Figure 6b. The combinator
distr(ps) takes a list of parsers and sequences them, it thus
distributes parsers over lists. The combinator collect (ps)
behaves like done(p) but lifted to a list of parsers. It is only
successful, if all involved parsers can return a result and
aggregates all results in a list. For brevity, we omitted the im-
plementation of delegateN and manyCount. delegateN(n, p)
delegates the next n tokens to p and then fails on further input.
manyCount(p) is similar to many but returns the number of
elements in the resulting list.

In the implementation of the table parser flatMap is used
twice for data-dependency: Firstly, it is required to access the
layout and dynamically construct the corresponding parsers.
Secondly, it is used after reading every line of a row to access
the suspended parsers and continues with the next line.

val line = many(no(’\n’)) ∼ ’\n’

val emptyLine = many(space) ∼ ’\n’

def indentBy[T](i : P[Any]) : P[T]⇒ P[T] = repeat[T] {p ⇒
(emptyLine ˆ̂ { ⇒ p � ’\n’}
| i ∼ (line & delegate(p))

)

}
def indented[T](p : P[T]) : P[T] =

some(space) >> {i ⇒ indentBy(acceptSeq(i))(p) <<< s }

(a) Definition of an improved version of the combinator indented(p).

val always = many(any)

def biasedAlt[T](p : P[T], q : P[T]) : P[T] =

p | not(p ∼ always) & q

def indentBy[T](i : P[Any]) : P[T]⇒ P[T] = repeat[T] {p ⇒
biasedAlt(emptyLine ˆ̂ { ⇒ p � ’\n’},

i ∼ (line & delegate(p)))

}
def indented[T](p : P[T]) : P[T] = some(space) >> {i ⇒

not(space ∼ always) & (indentBy(acceptSeq(i))(p) <<< s)

}
(b) Further improving the combinator indented (p) by reducing potential
for ambiguities. Differences to Figure 7a are highlighted in gray .

Figure 7. Improving combinator indented(p).

The implementation is modular: It is possible to define
a table parser once and for all as a separate module – no
cross-cutting changes to other parsers are necessary. At the
same time, being defined as a parser combinator, it can just
be used recursively to allow for nested tables.

In the spirit of parser combinators, all the combinators
we have implemented in this paper, such as preprocessing,
indentation, mixed-documents and tables can naturally be
combined to parse a complex structured document.

5. Improved Indentation Sensitivity
In the previous sections, we have seen how first-class deriva-
tives can be used to define parser combinators for several
different layout-sensitive features. The implementation of
the indentation combinator in Section 3 shows how first-
class derivatives can encode non-context-free constructs in a
modular way, but it is not as sophisticated as real languages
with indentation-sensitive syntax. Does our approach to parse
indentation sensitivity based on first-class derivatives and
delimited delegation scale to the requirements of realistic
languages such as Python? To further evaluate the expres-
siveness of first-class derivatives, in this and the following
section we gradually improve the implementation of inden-
tation sensitivity to support a larger subset of the Python
language.

The development takes place in two steps: In this section,
we show how two simple extensions can be implemented by
modification of the indentation combinator. These modifica-
tions give rise to a discussion on how to implement lookahead
and left biased alternative in our framework. In the next sec-
tion, we then propose two different strategies to implement
line joining that exhibit different modularity properties.

Our experiments suggest that it is possible to define
indentation sensitivity and line joining for Python parsers as
(modular) combinators in our framework. However, since the
communication between the different combinators is achieved
by modification of the input stream, doing so requires careful

consideration of the possible “side-effects” on other involved
combinators. The definition of line joining does not only
require the preprocessing to depend on the context (which
is well supported by our framework) but also on the lexical
structure (which is less clear how to support in a modular
way). Future work should investigate the integration of lexical
analysis and first-class derivatives to add support for this form
of dependency.

5.1 Improving the Indentation Combinator
The combinator indented as defined in the introductory
example in Figure 5b implements a much simpler treatment
of indentation than what can be found in most indentation-
based programming languages. For instance, it only supports
a fixed indentation of two spaces at the beginning of every
indented line. It also requires empty lines to be indented
correctly. However, according to the Python specification
[19], empty lines should be ignored and hence do not need to
be indented correctly. Also, the indentation of a block should
be determined by the indentation of the first line of this block.
Implementing these requirements exposes a limitation of our
library: Lookahead and biased alternative cannot be expressed
as user defined combinators. To work around this issue we
use a combination of prefix-checking, based on negation
and intersection, as well as rewriting of the grammar when
necessary.

In a first step, Figure 7a defines an improved version of
the indentation combinator that infers the indentation from
the first line of a block and supports empty lines. Compared
to the previous version, the implementation is split into two
different combinators.

The combinator indentBy (i) (p) recognizes a block p
where the indentation of every line is represented by the
parser i . By repeatedly either recognizing an empty line or a
line that is indented by i , the combinator indentBy accounts
for the first requirement of ignoring the indentation of empty
lines.

To recognize a block with arbitrary indentation, the combi-
nator indented first processes multiple spaces. The resulting
list of space tokens represents the indentation of the first line
and is used in two ways. First, a parser that recognizes ex-
actly the same indentation in form of a sequence of the space
tokens (acceptSeq(i)) is passed as the first argument to the
combinator indentBy. Second, the spaces are fed back to the
parser that recognizes the indented block. This is an instance
of a pattern to simulate a form of non-consuming lookahead.

5.2 Lookahead and Biased Alternative
Unfortunately, the implementation of the indented combina-
tor in Figure 7a bears potential for ambiguities: If a parser ps
accepts whitespace at the beginning of a line and the input
contains a block indented by n spaces, there are n different
ways to recognize the block with indented(ps). In particular,
if a line of the block, other than the first line, is indented by
1 6 m < n spaces, by backtracking of the sequence parser,
the block can be recognized as indented by m spaces. For
parsing a Python-like language this is clearly wrong. Instead,
we expect the parser some(space) in the indented combina-
tor to consume as many spaces as possible before checking
indentation with indentBy. To make the combinator indented
robust against parsers like ps , we simulate a greedy behavior
for some (space) by making sure it is not immediately fol-
lowed by another space. While traditional parser combinator
libraries support lookahead for this purpose, in our frame-
work we can use intersection and negation to assert that the
result of the combinator indentBy does not recognize a space
as prefix after consuming the initial indentation. Figure 7b
redefines indented and incorporates checking for the absence
of the prefix. In general, for two parsers p and q we can
identify the pattern

not(p ∼ always) & q

to express “q without prefixes p”. Here, the parser always is
defined by many(any) and is used to implement checking for
a prefix instead of an exact match for p.

We can also identify a second source of ambiguity in the
implementation in Figure 7a. Correctly indented empty lines
are recognized by both alternatives in indentBy. To prevent
this ambiguity we present an implementation of left-biased
alternative biasedAlt(p, q) in Figure 7b. By checking for the
absence of a prefix p in the case of q we thus prefer the first
alternative in case of an ambiguity.

Intersecting with a prefix is a workaround for the lack of
built-in support for lookahead in our framework. But is this
workaround sufficient to fully eliminate the need for built-
in (non-consuming) lookahead as known from traditional
parser combinator libraries? In these libraries, if negative
lookahead (p ! q , that is, “p not followed by q”) occurs
in a context with the next parser in a sequence being k
(such as (p ! q) ∼ k) all the tokens that q uses are not
consumed and instead will be passed to k . However, the

translation to prefix checking as p ∼ not(q ∼ always) & k
is only correct in cases where k either represents the full
continuation parser (the parser that processes all of the
remaining input stream) or if no word recognized by k is
a prefix of a word recognized by q . To circumvent this
problem, we can inline more of the continuation and rewrite
to not(q ∼ always) & (k ∼ k ′). Eventually, this rewriting
might lead to a global transformation of the grammar. Thus,
our library is not expressive enough to implement lookahead
and biased choice as user-defined combinators. However, in
some cases, such as for the combinators in this and the next
section, prefix checking and local rewriting of the grammar
is sufficient as a workaround.

6. Line Joining
Along the concept of the indentation sensitivity, the Python
specification distinguishes between logical lines and physical
lines. Indentation checking is only applied to logical lines. A
logical line can consist of multiple physical lines according
to the following line joining rules:

1. linebreaks in strings that span multiple lines (also called
“long strings” or “multiline strings”) do not separate
logical lines.

2. linebreaks preceded by a backslash character are escaped
and do not separate logical lines (explicit line joining).

3. linebreaks in expressions that are enclosed in parenthesis,
brackets or curly braces do not separate logical lines
(implicit line joining).

In the remainder of this section we describe two attempts
to implement line joining modularly as separate parser combi-
nators, but exclude the handling of source code comments for
ease of presentation. While implementing parser combinators
that also deal with comments requires some care, it does not
introduce a new set of problems.

All examples in this paper so far were presented in a
scannerless style, but parsing with first-class derivatives is
generally independent of the existence of a separate lexer
phase. Thus, first we show how to implement line joining
in the presence of a separate lexer phase. Then we illustrate
what it takes to achieve the same in a scannerless setting. We
defer a discussion of the limitations of both approaches to
Section 9.

6.1 Line Joining with a Separate Lexer
The Python specification is written with a separate lexer phase
in mind and thus it is not surprising to see that the line joining
rules are not difficult to express in such a setting. We can use
first-class derivatives with a separate lexer phase by defining
the type Elem to be an appropriate type of lexemes. Parser
combinators that do not match particular elements of the input
stream can just be reused without changes in combination
with a lexer. All others parsers, including indented, need
to be modified to match the corresponding tokens instead

def repEl[T](f : Elem⇒ P[T]⇒ P[T]) =

repeat[T] {p ⇒ any ˆ̂ {el ⇒ f (el)(p)}}
def mapEl[T](f : Elem⇒ Elem): P[T]⇒ P[T] =

repEl(el ⇒ p ⇒ p � f (el))

def filterIn[T](allowed : List[Elem]) : P[T]⇒ P[T] =

repEl(p ⇒ el ⇒ if (allowed contains el) p � el else p)

(a) Derived parser combinators for preprocessing the input stream of a given
parser.

def nlToWs[T] = mapEl[T] {c ⇒ if (c ≡ \n) else c}

val dyck = ’(’ ∼ many(dyck) ∼ ’)’

val parens = (’(’ ∼ always ∼ ’)’) &

filterIn(List(’(’ , ’)’))(dyck)

def ilj[T] = repeat[T] { parens & nlToWs(delegate(p))

| no(’(’ , ’)’) & delegate(p)

}
def joiningIndented[T](p : P[T]) : P[T] = ilj(indented(p))

(b) Implementation of implicit line joining as a parser combinator that filters
newlines inside a set of balanced parenthesis.

Figure 8. Line joining in presence of a separate lexer phase.

of characters. This could be avoided by parametrization of
indented over line ends and spaces.

For the purpose of parsing an indentation-sensitive lan-
guage, we assume a simple lexer, that is, one implementable
by a finite state automaton, with the following informal spec-
ification: besides the basic lexemes (such as literals, iden-
tifiers, (multiline) strings, punctuation etc.) the lexer also
emits tokens for every whitespace, comment, and newline.
Hence, the output of the lexer for an example input stream
“ x+\\\n(\n’’’\n)’’’)\n” will be:

’x’ ’+’ \\\n ’(’ \n STR ’)’ \n

This example input stream requires the application of all
three line joining rules. However, the rule for line joining
within multiline strings is already implemented in the lexer
by grouping all input enclosed by ’’’ into one string token.
At the same time, the lexer might output a \\\n token
for every escaped newline and explicit line joining can
simply be implemented as a combinator filtering these tokens.
Consequently, only the definition for implicit line joining is
given in Figure 8b using utility combinators as defined in
Figure 8a. Implicit line joining is implemented as combinator
ilj(p) by removing all layout-irrelevant newlines within a pair
of parenthesis. It performs a tokenwise scan over the input
stream, delegating all tokens unless inside a region delimited
by balanced parenthesis. There, additional filtering of the
input stream with nlToWs(p) is applied.

The definition of the delimiter region parens is imple-
mented by extending the parser dyck for the Dyck language
of well-balanced parenthesis5 to ignore all tokens other than
parenthesis. The intersection with ’(’ ∼ always ∼ ’)’ bears
repetition, but is necessary to restrict the scope of ignoring
tokens to the inside of a pair of parenthesis.

When parsing the above-mentioned token stream with
joiningIndented, the input to indented will be processed to

’x’ ’+’ \\\n ’(’ STR ’)’ \n

5 We only consider one sort of parenthesis here, which can easily be extended
to any number of different parenthesis.

and appears as a single logical line. As before, the initial
indentation (“ ”) will be stripped by indented and in
effect p only has to recognize the remainder of the processed
input stream.

6.2 Scannerless Line Joining
The implementation of line joining in Figure 8b is straight-
forward. However, if lexing is external to our framework the
composition of different layout features like indentation, ta-
bles, and mixed documents would require a composition of
the involved lexers. To avoid this problem, we continue the
development and explore how to implement line joining in a
scannerless setting. We start by discussing an implementation
of line joining for multiline strings which already exhibits
most of the difficulties that arise when trying to implement
also explicit line joining and implicit line joining.

The combinator indented (p) is implemented using the
delimiter line and thus preprocesses the input to p on a
line-by-line basis. In a scannerless setting, this is also true
for string literals that span multiple lines. Every line of the
string literal is checked for correct indentation and then the
indentation is stripped before delegation. However, similar
to the distinction between logical and physical lines, we
should distinguish indentation-relevant newline tokens from
irrelevant ones. Newline tokens within multiline strings
should not constitute a line end from the point of view of the
delimiter line.

To ignore these newlines during indentation checking and
at the same time preserve them as input to the underlying
parser, we define a preprocessing parser combinator mlj(p)
that replaces every newline token enclosed in a multiline
string by a special marker token ←↩. We assume that this
marker does not occur in the original input stream. Marked
newlines can be unmasked again, after checking indenta-
tion. This way indentation-irrelevant newline tokens can be
ignored without completely deleting them from the input
stream. For some parser p we thus can define indentation that
respects multiline strings by:

mlj(indented(unmask(p)))

def within[T](region : P[Any],

skip : P[Any],

f : P[P[T]]⇒ P[P[T]]) : P[T]⇒ P[T] =

p ⇒ done(p) | biasedAlt(

(skip & delegate(p)

| region & f (delegate(p))

) >> within(region, skip, f),

(any & delegate(p)) >> within(region, skip, f))

(a) Parser combinator that allows region based preprocessing of the input
stream.

def mask[T] = mapEl[T] {c ⇒ if (c ≡ ’\n’) ←↩ else c}
def unmask[T] = mapEl[T] {c ⇒ if (c ≡←↩) ’\n’ else c}
def constWs[T] = mapEl[T] {c ⇒ ’ ’}
val string = single | multi

val parens =(’(’ ∼ always ∼ ’)’) &

within(string | no(’(’) & no(’)’), fail, filterIn(Nil))(dyck)

def mlj[T] = within[T](multi, single, mask)

def elj[T] = within[T]("\\\n", string, constWs)

def ilj[T] = within[T](parens, string, nlToWs)

(b) Implementing of line joining by approximation of the lexical structure.
Definitions for single and multi are omitted. Parser dyck and combinator
nlToWs are defined by straightforward translation from Figure 8b.

Figure 9. Implementation of line joining in a scannerless setting.

Given the example input above, the indentation combinator
has to process “ x+\\\n(\n’’’←↩)’’’)\n” while the
input to p will be “x+\\\n(\n’’’\n)’’’)\n”.

To implement mlj it is necessary to determine whether
a newline is enclosed in a multiline string or not. This
decision is dependent on the lexical structure. In a scannerless
setting, however, recognizing lexemes like multiline strings
is typically part of the parser for expressions and thus only
performed during parsing. In particular, the various parsers
for lexemes are part of the internal structure of the delegatee
p. At the same time, our framework does not permit any
communication of a delegatee to the delegating parser, except
for the result value after a successful parse. Hence, it is
not possible for a delegating parser to inspect the state
of the delegatee to obtain information about the current
position in the lexical or syntactical structure. This leads us
to believe that in our framework and in a scannerless setting,
it is not possible to implement the combinator mlj(p) fully
independent of the parser p. The implementation of mlj has
to repeat just enough of the lexical processing to make its
delegation decisions.

To work around this lack of communication, Figure 9a
defines the combinator within (region, skip, f) which we
use to approximate the lexical structure without having to
implement a full lexer. The result of within is again a parser
combinator that given a parser p similar to ilj in Figure 8b
performs a linear scan of the input for the specified region
while skipping the scan within regions specified by skip. All
input processed by the combinator will be delegated to p,
except within a region. There, the parser transformer f is
applied before delegation. The body of the combinator within
is the result of inlining the continuation parser (as described
in Section 5.1) and may be easier to comprehend before the
transformation:

repeat[T] {p ⇒ biasedAlt(

skip & delegate(p) | region & f (delegate(p)),

any & delegate(p))

}

The use of biased alternative simulates the greedy behavior
of a lexer and assures that within will only continue its scan
by skipping a single token with any & delegate (p) if it is
not possible to skip or to transform a region.

Using within and mask we can define mlj (p) as in
Figure 9b. Applying mlj to a parser p will mask all the
newlines within a multiline string. It will skip over single-line
strings to account for the interaction of single-line strings and
multiline strings as in "’’’"\n’’’.

Similar to line joining within multiline strings, explicit line
joining is implemented as combinator elj (p). The newline
characters of explicitly joined lines are replaced by spaces
since they might separate two tokens. Explicitly joined lines
within strings are ignored.

The definition of implicit line joining in Figure 9b is very
similar to the one in Figure 8b. The parser for the Dyck
language dyck is again extended to ignore all tokens other
than parentheses, but now also needs to ignore parentheses
that are contained in strings.

Finally, the line joining combinators as well as the combi-
nator indented can be combined to:

def joiningIndented[T](p : P [T]) : P [T] =

elj(ilj(mlj(indented(unmask(p)))))

For the above example, the input to indented will be prepro-
cessed to a single logical line “ x+ (’’’←↩)’’’)\n”.

The concept of line joining as preprocessing of the input
stream is well supported by first-class derivatives. However,
the selection of indentation irrelevant newlines is dependent
on the lexical structure and thus demands more communica-
tion with the delegatee.

7. Implementation
In this section, after establishing the basic prerequisites, we
present the implementation of our parser combinator library,
show how to implement optimizations by using dynamic
dispatch. We defer a comparison of our implementation with
the one of Might et al. [17] to Section 8.

First, we define derivatives on languages formally. To this
end, given some alphabet A, we say w ∈ A∗ is a word and
L ⊆ A∗ is a language over the alphabet A. We sometimes
refer to the elements of the alphabet as “character” or “token”.
ε is used to denote the empty word. The (left) derivative of a
language L by a token a is defined by

Da(L) = {w | aw ∈ L}

Symmetrically, also right derivatives exist, but we will focus
on the former. We can lift the notion of derivatives from
tokens to words, by

Daw (L) = Da(Dw (L))

Example. The a-derivative of the language L = a+ =
{a, aa, aaa, ...} is Da(L) = a∗ = {ε, a, aa, ...}. The b-
derivative of the same language in turn is Db(L) = ∅.

7.1 Derivative of a Parser
In the previous section, a parser was defined as an abstract
type P [+R]. To define the parsers in our framework we now
instantiate this abstract type with the equally named trait6:

trait P[+R] {
def results : Res[R]

def derive : Elem⇒ P[R]

}

Hence, a parser p is an object implementing the trait P[R].
Its behavior is uniquely defined by observations that can be
made using the two methods of the signature: The method
results returns a list of syntax trees if the virtual input stream
of that parser would end at the given point, and the method
derive takes the parser into the next state, consuming the
provided element. Analogously to derivatives on language,
we call the result of p.derive (c) the derivative of parser p
by the character c. We will also use Scala’s support for infix
notation and write (p derive c).

Using derive and results we can now give an implemen-
tation of parse as follows:

def parse[R](p : P[R], input : List[Elem]) =

input .foldLeft(p) {(p2, el)⇒ p2 derive el }.results

The definition of parse helps us to more precisely define
our informal description of result-preservation from the
previous section as:

parse(p, aw) = parse(p derive a,w)

Finally, we define the language of a parser L (p) by
induction over the length of the words in the language. A
parser p accepts the empty word, if and only if the list of
results is non-empty:

6 For our purposes it is enough to interpret a Scala trait as interface with
abstract members.

ε ∈ L(p) iff p.results 6= Nil

A word aw is in the language of the parser p, if the suffix w
is in the language of the a-derivative of the parser p:

aw ∈ L(p) iff w ∈ L(p derive a)

Using this definition, we can now relate derivatives of
languages and derivatives of parsers by the following com-
mutation:

Da(L(p)) = L(p derive a)

That is, the a-derivative of a parser’s language is the language
of the parser’s a-derivative.

7.2 Derivative-Based Implementation of Parser
Combinators

In Figure 1a (Section 3) we have seen the syntax of parser
combinators in our library. We will now define each of the
combinators by a parser-object implementing the correspond-
ing behavior in terms of the methods results and derive. At
first, let us consider the set of combinators in Figure 10a, that,
when used recursively, can recognize the class of context-free
languages7. For all combinators (except fail which does not
take arguments), we use anonymous functions to implement
the interface of Figure 1a.

The implementation of the parser combinators that can
express context-free languages is standard for derivative
based parsing [17]. succeed (r) is implemented as a parser
that immediately succeeds with the given result r and fails on
any further input, acceptIf (pred) succeeds after consuming
one character, but only if the character matches the predicate
pred , and the combinator fail never has any result and will fail
on any further input. The implementation of the combinator
map(p)(f) uses the method map defined on Scala collections
to transform the results. The results of the combinator seq are
defined as the cartesian product of the results of p and q , using
Scala’s syntax for for-comprehensions. Consequently, only if
both parsers return a syntax tree, the sequence of p and q can
successfully return a result. The definition of the derivative of
the combinator seq makes use of the nullability combinator
done, which returns the same results as p, but terminates
the parser by returning fail on every step. To now derive the
sequence of p and q by el , we have to consider two cases.
First, p might be done, that is, it accepts the empty word. In
that case, we continue with q derive el . Second, p still can
consume input, so we continue with p derive el . Finally,
the alt combinator explores both alternatives in parallel,
aggregating the results using list concatenation.

Figure 10b gives the implementation of the intersection of
two parsers and(p, q), the negation of a parser not(p) and the
monadic combinator flatMap. Similar to alt, the intersection

7 Later in this section, we present the combinator nt which is necessary for
recursive definitions.

def succeed[R] = res ⇒ new P[R] {
def results = List(res)

def derive = el ⇒ fail

}
def acceptIf = pred ⇒ new P[Elem] {
def results = Nil

def derive = el ⇒ if (pred (el)) succeed(el) else fail

}
def fail[R] = new P[R] {

def results = Nil

def derive = el ⇒ fail

}
def map[R,S] = p ⇒ f ⇒ new P[S] {
def results = p.results.map(f)

def derive = el ⇒ map(p derive el)(f)

}
def seq[R,S] = (p, q)⇒ new P[(R,S)] {
def results = for (r ← p.results; s ← q .results) yield (r , s)

def derive = el ⇒ alt(seq(done(p), q derive el),

seq(p derive el , q))

}
def alt[R] = (p, q)⇒ new P[R] {
def results = p.results ++q .results

def derive = el ⇒ alt(p derive el , q derive el)

}
def done[R] = p ⇒ new P[R] {
def results = p.results

def derive = el ⇒ fail

}
(a) Implementation of combinators that can express context-free languages.

def and[R,S] = (p, q)⇒ new P[(R,S)] {
def results = for (r ← p.results; s ← q .results) yield (r , s)

def derive = el ⇒ and(p derive el , q derive el)

}
def not[R] = p ⇒ new P[Unit] {
def results = if (p.results ≡ Nil) List(()) else Nil

def derive = el ⇒ not(p derive el)

}
def flatMap[R,S] = p ⇒ f ⇒ new P[S] {
def results = p.results.flatMap {r ⇒ f (r).results}
def derive = el ⇒ p.results.map {r ⇒ f (r).derive(el)}

.foldLeft(flatMap(p derive el)(f))(alt)

}
(b) Implementation of non-context-free parser combinators

def feed[R] = (p, el)⇒ p derive el

(c) Implementation of our new combinator feed.

Figure 10. Implementation of our combinator library, de-
fined in terms of derivatives.

just derives both parsers p and q in parallel but like seq
returns the cartesian product of the results. The negation
returns a result (the Scala unit value) in case p has no result
and the empty list in case p would succeed. The result of the
combinator flatMap(p)(f) is defined to be the concatenated
results of the parsers after applying the function f . Similar
to seq, for the derivative of flatMap two cases have to be
considered. Firstly, if p has results, f can be applied to the
results to obtain a list of parsers that are then joined using alt.
Secondly, p itself is derived by el and the result is wrapped
in a call to flatMap.

Finally, Figure 10c defines our new parser combinator
feed (p, el) simply as a user available alias for the internal
method derive.

7.3 Nonterminals
Without support for recursive definitions, the combinators
in Figure 10a can only express regular languages [5]. To
also allow recursively defined parsers, in our framework,
recursive definitions are explicitly marked as such by using
the nt combinator. However, by doing so the combinator
fulfills multiple purposes. It allows us to represent parsers
as cyclic structures in memory, assures that the derivative
of a recursive parser can, in general, be recursive again, and
uses fixed point iteration to compute attributes over the parser
graph.

The implementation of nt is given in Figure 11. For one, it
guards the construction of the parser-graph by being lazy in
its argument p and thus allows the creation of cyclic structures
in memory8. For instance, omitting the combinator nt in

val as : P[Any] = nt(as ∼ ’a’ | succeed(()))

would immediately diverge, since evaluating the body of
as itself involves constructing the parser of as. Deriving as
by ’a’ illustrates another, similar problem. To compute the
derivative of as, we need the ’a’-derivative of as itself. In
general, the derivative of a recursive parser might again be a
recursive parser. This can be achieved by the following first
attempt at implementing derive:

def derive = el ⇒
memo.getOrElseUpdate(el , nt(p derive el))

This simple form of memoization, local to the nonterminal,
assures that computing the derivative with the same token a
second time, will yield a reference to the very same parser.
In addition, the laziness of nt assures that this is even the
case if the derivative is requested during the computation of
the derivative itself. Thus, the a-derivative of as gives as2,
which is almost exactly as just with a change in the result of
succeed:

as2 = nt(as2 ∼ ’a’ | succeed(((), ’a’)))

8 Since Scala only support by-need parameters, laziness is encoded by
caching the result of forcing p as p.

def nt[R] = p ⇒ new P[R] {
lazy val p = p

val memo = mutable.HashMap.empty[Elem,P[R]]

val res = attribute(p.results)

def results = res.value

def derive = el ⇒ memo.getOrElseUpdate(el , {
memo (el) = fail

if (p.empty) {
fail

} else {
nt(p derive el)

}
})
}

Figure 11. Implementation of the combinator nt , definition
of attribute and empty omitted.

The method results in nt is implemented by a fixed point
iteration, using Nil as bottom of the lattice, set union as join
and set-inclusion as ordering [17]. Due to the potentially
cyclic structure, the computation of p.results might again
involve the computation of the results on the nonterminal-
parser itself.

For instance, to compute as.results we start with Nil as
bottom of the lattice. The left-hand-side of the alternative
(as ∼ ’a’) gives the cross product of Nil and Nil, hence
Nil. The right-hand-side gives List(()). In a second iteration,
starting with List(()) as previous result, as ∼ ’a’ gives the
cross product of List(()) and Nil and the right-hand-side did
not change, again resulting in List(()). The implementation
of the fixed point computation itself is completely standard
and no different from that of related work.

The implementation of memoization in Figure 11 slightly
differs from the first attempt presented above. The modifi-
cations are necessary to avoid divergence with exotic parser
like the following:

val exotic : P[Any] = nt(exotic� ’a’)

To compute exotic.results first the a-derivative has to be
computed. However, the computation of the derivative again
involves the a-derivative and hence diverges.

The reason is, that in our implementation above, derive
will always just return a new nonterminal, guarding the actual
derivative (which diverges) with laziness, leading to a non-
productive, infinite chain of nonterminals. To avoid this,
instead of just returning the nonterminal that represents the
derivative, we can check whether the underlying parser p
is the empty language. If this is the case, then it is safe to
assume that also the derivative of the nonterminal-parser will
be empty, so we can as well return fail. To this end, we use
p.empty to obtain a conservative approximation of whether

trait P[+R] {
...

def seq1[S](q : P[S]) : P[(R,S)] = q .seq2(p)

def seq2[S](q : P[S]) : P[(S ,R)] = new P[(S ,R)] { ...}
}
...

def fail[R] = new P[R] {
...

override def seq1[S](q : P[S]) = fail

override def seq2[S](q : P[S]) = fail

}
...

def seq[R,S] =(p, q)⇒ p.seq1(q)

...

Figure 12. Using double dispatch to implement compaction
rules in order to reduce the size of the parser-graph.

the parser p only recognizes the empty language9. However,
computing p.empty will force the evaluation of parser p,
which in turn leads to computing the derivative and hence
diverges. This can be avoided, by first storing the parser fail as
preliminary result in the memo-table, which is then updated
with the actual result after computing the derivative10.

In our implementation, the parser exotic thus behaves like
the parser fail.

7.4 Compaction by Dynamic Dispatch
Applying equivalences like

p | fail = fail | p = p (1)

p ∼ fail = fail ∼ p = fail (2)

in a directed way can lead to a significantly cut down of the
parser-graph and in effect can improve the performance of
parsing [1, 17]. This process is also called compaction. To
elegantly implement compaction rules in our object-oriented
setting, we slightly need to modify the parser implementation.

Figure 12 illustrates how the equivalence from Equation 2
can be implemented as compaction rule using an encoding
of double dispatch. The implementation of combinators
just forwards to a dispatching call on the first receiver,
which itself dispatches on the second receiver. The original
implementation of seq, in turn, can now be found as the
default implementation of seq2. The two methods seq1 and
seq1 are template methods which should be overwritten
for optimization. Such an optimization is achieved in the
implementation of the fail combinator, overwriting seq1 and
seq2 to immediately return fail. For unary combinators, such
as for the compaction rule

9 We omit the implementation of the attribute empty here which is also
implemented by fixed point iteration.
10 This is similar to how blackboxing is used in the programming language
Haskell to implement the forcing of a thunk.

done(fail) = fail

simple dynamic dispatch is sufficient. This approach is similar
to smart-constructors in functional programming. Optimiza-
tions are performed already during the construction of the
parser objects.

8. Related Work
In this section, we review work that is closely related either
in terms of implementation or expressive power.

Derivative-based parsing. Parsing with derivatives is a rel-
atively new research area. Still, there already exist multiple
parser combinator libraries using derivatives as the basis for
their implementation. While the existing approaches only use
derivatives as implementation technique, none of them of-
fers first-class derivatives as part of the term language to the
user. They all have a similar expressive power as traditional
combinator libraries. Might et al. [17] introduce parsing with
derivatives as a general parsing technique that is simple to un-
derstand. Danielsson [6] uses derivatives as parsing backend
for a parser combinator library in Agda, that guarantees to be
total. Moss [18] gives a derivative-based implementation for
parsing expression grammars (PEG) implementing support
for biased choice and lookahead without consuming tokens.
Adams et al. [1] show that derivative-based parsing can be
cubic in its worst-case complexity. They propose optimiza-
tions and further compaction rules that they claim to make
derivative based parsing performant enough to be used in
practice.

Of the work on parsing with derivatives, our implemen-
tation is most closely related to prior work by Might et al.
[17] which requires some highlighting of similarities and
differences. A first high-level difference is that we chose an
object-oriented decomposition, grouping the equations for
results and derive per combinator while Might et al. on the
other hand maintain an explicit term representation of the
grammar and define their equivalent of the functions in terms
of pattern matching. Like Might et al. we use fixed point
iteration for the computation of the parser results as well as
memoization and laziness to support recursive grammars by
allowing cycles in the parser-graph. However, at the same
time, we limit this treatment to parsers which represent non-
terminals, only. Annotating potentially left-recursive parsers
and only applying memoization selectively is a well-known
technique, for instance, used by the Packrat-parser imple-
mentation in the Scala standard library. While Might et al.
require all parser combinators to be lazy in their arguments,
restricting this requirement to only the combinator nt also has
a practical benefit. In this way, our implementation can more
easily be applied in languages where encoding laziness can
be cumbersome (as in Java). At the same time, by limiting the
handling of laziness, fixed point iteration and memoization
to one combinator also makes it easier to reason about the
behavior of all other combinators in isolation. Additionally

to the parsers that allow expressing context-free grammars,
we also implement the parser combinators and, not, flatMap
and expose derivatives to the user in form of the parser com-
binator feed. Finally, we show how compaction rules can
be implemented in an object-oriented setting, using simple
dynamic dispatch for nullary and unary combinators and an
encoding of double dispatch for binary combinators.

Data-dependent grammars. Data-dependent grammars [4,
11, 12] support implementing parsers for many of the use
cases mentioned in the present paper. In the framework of
data-dependent grammars the user can express a certain
context-sensitivity by saving context information in global
state and later use the state in predicates to constrain the
application of productions. The parser framework implicitly
threads this state through the parsing process and evaluates
the constraints to guide recognition. While data-dependent
grammars offer a declarative abstraction over passing global
state, they are implemented as parser generator, not as a
combinator library. Thus users are limited to the abstractions
provided by the framework.

Iteratees. Kiselyov [13] introduces a programming style,
which he refers to as Iteratee IO. Using the concepts of it-
eratees (essentially stream consumers that can be chained),
enumerators (producers) and enumeratees (consumer and pro-
ducer at the same time) as building blocks, Iteratee IO is a
structured way of processing potentially large data incremen-
tally. Iteratees can be also used to implement parsers. Similar
to derivative-based parsing and other forms of on-line parsing,
the resulting parsers process the stream incrementally. In the
terminology of the Iteratee IO, our parsers are iteratees and
the first-class derivative is an enumerator.

Kiselyov introduces a combinator en str that is very
similar to our combinator feed. However, like in the related
work on derivative based parsing, en str is again only used for
the formalization of the parsers and not explicitly designed
as tool for a user to define parsers.

9. Discussion and Future Work
In this section, we address a couple of different topics that
require discussion and point to potential future work.

9.1 Indentation sensitivity
Indentation sensitivity itself cannot be expressed using
context-free grammars. Nevertheless, there has been effort
dedicated to implementing parsers that recognize indentation
and to extend grammar formalisms in order to concisely
express indentation sensitivity. However, to the best of our
knowledge existing solutions require an ad hoc modification
of the lexer to track the state of indentation [9, 19], specialized
extensions to grammar formalisms [2], global transforma-
tions [3] or layout-constraint based post-processing of the
parse forest [7]. The closest to a modular description of inden-
tation sensitivity are data dependent parsing approaches [4].

However, implemented as parser generators, users can only
use the abstraction mechanisms provided by the grammar
formalism and thus cannot abstract over indentation.

The technique for parsing layout presented in this paper
is based on first-class derivatives and delimited delegation.
Defining layout as parser combinators enables composition
and naturally scales to the recursive case. However, first-class
derivatives exhibit limits as soon as the delegation depends on
the delegatee. This is a paradigm currently not well supported.
In the case of indentation with line joining, recognizing the
delimiter (logical lines) requires knowledge about the lexical
structure of the delegatee. Section 6 presented two different
workarounds that reveal different drawbacks.

A separate lexer phase removes the dependency of the
delegating parser (indented) to the delegatee by providing
the necessary information in the structure of the token stream.
However, a separate lexer will be specialized to one particular
parser and hence composing parsers (a strength of scannerless
parser combinator libraries) also requires composing the
lexers.

A possible solution to this problem would be to interpret
lexers as delegating parsers in our framework. In the end,
a lexer is nothing more than a stream preprocessor that
adds additional information and structure to the input stream.
Abstracting over the type of elements in the input stream

trait P[−Elem,+R] {
def results : Res[R]

def derive : Elem⇒ P[Elem,R]

}

would allow to perform local lexing. For instance in a mixed
document, a Python lexer would only be applied inside of a
code section while preserving the advantages as described in
Section 4. With such a generalization, the type of a Python
lexer and parser would be:

val python : P[Char,AST] = pyLex(pyProg)

val pyProg : P[Lex ,AST] = ...

def pyLex[T] : P[Lex ,T]⇒ P[Char,T] = ...

In addition, for instance, it would be possible to “unlex”
python comments and delegate the contents to a separate
parser that reuses the table combinator as it is defined in Sec-
tion 4. It is left to future work to explore the expressiveness
of combining local lexing with first-class derivatives.

Approximating the lexical structure, the implementation
in Figure 9 works around the limitation by repeating parts of
the lexer in the definition of the delegating combinators. This
however comes with a few drawbacks.

Firstly, the solution is not fully modular, since combina-
tors now depend on the definition of lexemes used in the
delegatee. Thus, adding a new lexeme (such as a comment)
to the implementation of the delegatee might require adap-
tion of the combinators. In fact, to also handle comments all
three combinators mlj, elj and ilj need adaption to account for

the lexical structure. In addition, similar to how ilj handles
newlines it requires modification to translate comments into
whitespace. Secondly, the solution of lexical approximation is
fragile and might interact with the delegation and preprocess-
ing. After recognizing a region as a lexeme, the preprocessing
of that region might change whether it still can be recognized
as a lexeme within the delegatee.Thirdly, the implementa-
tion bears repeated computation since (approximate) lexing
is performed multiple times.

In summary, first-class derivatives work best for delegating
parser combinators where the layout parsers that delimit the
scope of delegation can be expressed independently of the
delegatee (such as line for indentation, cellrow for tables,
coderegion for fenced code blocks). Future research could
investigate to make these dependencies explicit by allowing
additional communication from a delegatee to the delegating
parser.

9.2 Indentation Sensitivity in Haskell
The programming language Haskell is another well-known
example of a language with an indentation-sensitive grammar.
The Haskell Report [16] describes the so-called “layout rule”
informally as a process of inserting additional opening brace,
semicolon, and closing brace characters into the token stream.
Similarly to the rules for Python discussed above, layout
processing is suspended inside explicit pairs of braces, so
a Haskell parser in our framework would require similar
mechanisms to detect and handle balanced pairs of braces
outside comments, and so on.

However, layout processing in Haskell is not only based
on determining indentation and counting balanced pairs of
braces but also interacts with the grammar as follows: “A
close brace is also inserted whenever the syntactic category
containing the layout list ends; that is, if an illegal lexeme is
encountered at a point where a close brace would be legal, a
close brace is inserted” [16, Sec. 2.7]. The notion of “illegal
lexeme” is further clarified in the formal definition of the
layout rule as a function L given in the Haskell Report,
which inserts a “}” token “if the tokens generated so far
by L together with the next token t represent an invalid prefix
of the Haskell grammar, and the tokens generated so far by
L followed by the token ‘}’ represent a valid prefix of the
Haskell grammar” [16, Sec. 10.3]. A direct implementation
of this rule seems to require strong coupling of the lexer and
the parser, since either the lexer (or the lexical approximation)
need to decide whether a token stream is a valid prefix of
the Haskell grammar and thereby duplicate the work of the
parser, or they need a non-standard communication channel
with the parser to collaborate in the layout processing. It is an
open question whether our framework can implement these
approaches in a modular way.

Both Erdweg et al. [7] and Adams [2] describe indentation-
sensitive grammar formalisms where constraints about the
indentation of sub-phrases can be annotated to grammar
productions in order to express indentation-sensitive syntax

in a declarative way. These approaches are implemented
by generation of a generalized LR-parser and checking the
layout constraints after parsing or while parsing. Since the
layout constraints are part of the grammar, the dependence
of Haskell layout processing on Haskell parsing is no longer
problematic in these approaches. It would be interesting to
explore how a similar approach could be encoded in our
framework and what its implications on performance and
modularity would be.

9.3 Lookahead
Our case study in Section 5 suggests that even with the pow-
erful (and non-context-free) features of negation and inter-
section it remains difficult to express lookahead modularly.
We track this difficulties to our choice of basing our library
on parsing with derivatives: In the framework of traditional
parser combinator libraries with a definition of a parser simi-
lar to

P[T] = List[Elem]⇒ (Res[T],List[Elem])

it appears natural to add a lookahead parser combinator that
inspects the remainder of the input stream to decide whether
to accept a word or not without actually consuming input. In
contrast, to allow delegation and the resulting inversion of
control our library is based on parsing with derivatives with a
definition of a parser similar to:

P[T] =(Res[T],Elem⇒ P[T])

In this paper, we set out to show that it is natural to add
parser combinators that use two properties of parsers based on
derivatives. Firstly, derivation is push-based and thus driven
from the outside. This allows us to invert the control flow
and offer parser combinators that preprocess the input to
other parsers. Secondly, a parser derived by parts of the input
stream is again a parser. Having a first-class representation of
partially applied parsers allows us, in particular, to suspend
and resume delegation to parsers.

Where with lookahead (and similar features motivated by
the type of traditional parser combinators) it is possible to
modularly describe what should happen with the (output)
stream after a parser has processed parts of it, in our setting
with delegation (and similar features motivated by the type
of derivative-based parser combinators) it is possible to
modularly describe what should happen with fragments of
the (input) stream before a parser may process it.

Existing work on derivative-based implementations of
parsing expression grammars [18] suggests that adding full
support for lookahead is possible. Still, additional research
is necessary to fully combine and leverage the modularity
benefits implied by traditional and derivative-based parser
combinators.

9.4 Other Forms of Derivatives
We introduced derivatives (or left-quotients) as first-class
feature. We think it is worthwhile to also explore other forms
of quotienting such as the following two:

While the right-derivative can be expressed as a derived
combinator in our framework, it imposes performance penal-
ties. However, in combination with the left-derivative the
right-derivative could be useful for instance to select expr
from the production ’{’ ∼ expr ∼ ’}’.

It is well-known that context-free languages are closed
under quotienting with regular languages. Future work could
explore the design space of adding first-class derivation by
regular expression and the effects on the gained expressive
power. Concatenation and alternative appear straightforward.
However, we anticipate that an efficient support of deriving
by Kleene-star will be more challenging.

9.5 Effect on the Language Class
While this paper establishes that first-class derivatives can
be useful in practice to provide modular and compositional
parser implementations, a theoretical question remains:

Does extending a specification language for context-
free grammars with derivatives affect the correspond-
ing language class?

In particular, is such an extended grammar still context-free?
While it is well-known that context-free languages are closed
under left- (and right quotienting), we do not know of a case
where quotienting is considered as part of a grammar itself.

9.6 Performance
Finally, the performance of parsers implemented using our
library is not in the scope of this paper which focuses on
modularity. Albeit, building on derivative-based parsing the
implementation of basic combinators automatically benefits
from improvements in that area, such as the optimizations
proposed by Adams et al. [1]. Since our library includes
parser combinators like flatMap, intersection and negation it
is not possible to guarantee cubic bounds on complexity in
general. More research is necessary to investigate efficient
ways to incorporate these non-context-free combinators into
the framework of derivative based parsing. First experiments
on using laws of boolean algebra as compaction rules suggest
that this is a viable path for future improvements.

10. Conclusion
We have shown that the semantic concept of Brzozowski
derivatives of a parser can be internalized in the form of a
novel parser combinator. We have seen that this parser com-
binator can improve the modularity and reusability of parsers
in situations where the substream property is a problem. We
have demonstrated the feasibility of first-class derivatives by
means of a parser combinator library in Scala and a small set
of accompanying case studies.

Acknowledgments
We would like to thank the anonymous reviewers for their
comments that helped improve the paper. This work was
supported by DFG project OS 293/3-1.

References
[1] M. Adams, C. Hollenbeck, and M. Might. On the complexity

and performance of parsing with derivatives. In Proceedings
of the Conference of Programming Language Design and
Implementation, 2016.

[2] M. D. Adams. Principled parsing for indentation-sensitive
languages: Revisiting Landin’s offside rule. In Proceedings
of the Symposium on Principles of Programming Languages,
POPL, pages 511–522, New York, NY, USA, 2013. ACM.

[3] M. D. Adams and Ö. S. Ağacan. Indentation-sensitive parsing
for Parsec. In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, Haskell ’14, pages 121–132, New York,
NY, USA, Sept. 2014. ACM.

[4] A. Afroozeh and A. Izmaylova. One parser to rule them all.
In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward!), pages 151–170. ACM, 2015.

[5] J. A. Brzozowski. Derivatives of regular expressions. Journal
of the ACM (JACM), 11(4):481–494, 1964.

[6] N. A. Danielsson. Total parser combinators. In Proceedings
of the International Conference on Functional Programming,
ICFP, pages 285–296, New York, NY, USA, 2010. ACM.

[7] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Layout-
sensitive generalized parsing. In Software Language Engineer-
ing, pages 244–263. Springer, 2012.

[8] P. Hudak. Modular Domain Specific Languages and Tools.
In Proceedings of the International Conference on Software
Reuse, pages 134–142. IEEE, 1998.

[9] G. Hutton. Higher-order functions for parsing. Journal of
Functional Programming, 2:323–343, 7 1992.

[10] G. Hutton and E. Meijer. Monadic parsing in haskell. Journal
of functional programming, 8(04):437–444, 1998.

[11] T. Jim and Y. Mandelbaum. A new method for dependent
parsing. In Proceedings of the Programming Languages and
Systems: European Symposium on Programming, ESOP, pages
378–397. Springer, 2011.

[12] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and
algorithms for data-dependent grammars. In Proceedings of the
Symposium on Principles of Programming Languages, POPL,
pages 417–430, New York, NY, USA, 2010. ACM.

[13] O. Kiselyov. Iteratees. In Functional and Logic Programming,
pages 166–181. Springer, 2012.

[14] P. J. Landin. The next 700 programming languages. Commun.
ACM, 9(3):157–166, Mar. 1966.

[15] P. Ljunglöf. Pure functional parsing-an advanced tutorial. Li-
cenciate thesis, Göteborg University and Chalmers University
of Technology, Gothenburg, Sweden, 2002.

[16] S. Marlow (editor). Haskell 2010 language report. https://
www.haskell.org/onlinereport/haskell2010/, 2010.

[17] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives:
A functional pearl. In Proceedings of the International Confer-
ence on Functional Programming, ICFP, pages 189–195, New
York, NY, USA, 2011. ACM.

[18] A. Moss. Derivatives of parsing expression grammars. CoRR,
abs/1405.4841, 2014.

[19] Python Software Foundation. The Python language reference:
Full grammar specification. https://docs.python.org/3.
5/reference/grammar.html. Accessed: 2015-03-24.

[20] J. J. Rutten. Automata and coinduction (an exercise in coalge-
bra). Springer, 1998.

[21] S. D. Swierstra. Combinator parsing: A short tutorial. In
Language Engineering and Rigorous Software Development,
pages 252–300. Springer, 2009.

[22] P. Wadler. How to replace failure by a list of successes. In
Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 113–128, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

[23] J. Winter, M. M. Bonsangue, and J. Rutten. Context-free
languages, coalgebraically. Springer, 2011.

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://docs.python.org/3.5/reference/grammar.html
https://docs.python.org/3.5/reference/grammar.html

	Introduction
	Parser Combinator Libraries and the Substream Poperty
	First-Class Derivatives: Gaining Fine- Grained Control over the Input Stream.
	Traditional Parser Combinators
	First-Class Derivatives
	Indentation-Sensitive Parsing
	Implementation using First-Class Derivatives
	Derived Combinators

	Applications
	Increased Reuse through Parser Selection
	Modular Definitions as Combinators

	Improved Indentation Sensitivity
	Improving the Indentation Combinator
	Lookahead and Biased Alternative

	Line Joining
	Line Joining with a Separate Lexer
	Scannerless Line Joining

	Implementation
	Derivative of a Parser
	Derivative-Based Implementation of Parser Combinators
	Nonterminals
	Compaction by Dynamic Dispatch

	Related Work
	Discussion and Future Work
	Indentation sensitivity
	Indentation Sensitivity in Haskell
	Lookahead
	Other Forms of Derivatives
	Effect on the Language Class
	Performance

	Conclusion

